Inverse pendulum testing
This commit is contained in:
parent
f76fa8709d
commit
1b7b40adbc
16
.vscode/launch.json
vendored
Normal file
16
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
{
|
||||||
|
// Use IntelliSense to learn about possible attributes.
|
||||||
|
// Hover to view descriptions of existing attributes.
|
||||||
|
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||||
|
"version": "0.2.0",
|
||||||
|
"configurations": [
|
||||||
|
{
|
||||||
|
"name": "Python Debugger: Current File",
|
||||||
|
"type": "debugpy",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${file}",
|
||||||
|
"cwd": "${fileDirname}",
|
||||||
|
"console": "integratedTerminal"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
155
batch_trainer_cpu.py
Normal file
155
batch_trainer_cpu.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torchdiffeq import odeint
|
||||||
|
|
||||||
|
# Define the neural network controller
|
||||||
|
class PendulumController(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(PendulumController, self).__init__()
|
||||||
|
self.fc = nn.Sequential(
|
||||||
|
nn.Linear(4, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.fc(x)
|
||||||
|
|
||||||
|
# Define pendulum dynamics
|
||||||
|
class PendulumDynamics(nn.Module):
|
||||||
|
def __init__(self, m=10, g=9.81, R=1.0):
|
||||||
|
super(PendulumDynamics, self).__init__()
|
||||||
|
self.m = m
|
||||||
|
self.g = g
|
||||||
|
self.R = R
|
||||||
|
self.torque_fn = None # Set later before calling odeint
|
||||||
|
|
||||||
|
def set_torque_fn(self, torque_fn):
|
||||||
|
""" Set the neural network-based torque function """
|
||||||
|
self.torque_fn = torque_fn
|
||||||
|
|
||||||
|
def forward(self, t, state):
|
||||||
|
theta, omega = state[:, :, 0], state[:, :, 1] # Extract theta and omega
|
||||||
|
|
||||||
|
# Ensure torque is correctly shaped
|
||||||
|
torque = self.torque_fn(state) # Neural network predicts torque
|
||||||
|
torque = torch.clamp(torque.squeeze(-1), -250, 250) # Limit torque
|
||||||
|
|
||||||
|
dtheta_dt = omega
|
||||||
|
domega_dt = (self.g / self.R) * torch.sin(theta) + torque / (self.m * self.R**2)
|
||||||
|
|
||||||
|
return torch.stack([dtheta_dt, domega_dt], dim=2)
|
||||||
|
|
||||||
|
# Loss function with angle wrapping
|
||||||
|
def loss_fn(state, target_theta, torques):
|
||||||
|
theta = state[:, :, 0] # Extract theta trajectory
|
||||||
|
omega = state[:, :, 1] # Extract omega trajectory
|
||||||
|
|
||||||
|
# Wrap theta to be within [-π, π]
|
||||||
|
theta_wrapped = ((theta + torch.pi) % (2 * torch.pi)) - torch.pi
|
||||||
|
|
||||||
|
alpha = 10.0 # Heavier weight for theta
|
||||||
|
beta = 0.1 # Lighter weight for omega
|
||||||
|
gamma = 0.01 # Regularization weight for motor torque
|
||||||
|
delta = 100.0 # Large penalty for exceeding torque limit
|
||||||
|
|
||||||
|
# Compute summation of squared differences for wrapped theta
|
||||||
|
loss_theta = alpha * torch.sum((theta_wrapped - target_theta) ** 2)
|
||||||
|
|
||||||
|
# Add penalty for omega (average remains to avoid scaling issues)
|
||||||
|
loss_omega = beta * torch.mean(omega ** 2)
|
||||||
|
|
||||||
|
# Add penalty for excessive torque usage (sum-based)
|
||||||
|
loss_torque = gamma * torch.sum(torques ** 2)
|
||||||
|
|
||||||
|
# Add penalty for torque exceeding 250
|
||||||
|
over_limit_penalty = delta * torch.sum((torques.abs() > 250) * (torques.abs() - 250) ** 2)
|
||||||
|
|
||||||
|
# Combine all losses
|
||||||
|
loss = loss_theta + loss_omega + loss_torque + over_limit_penalty
|
||||||
|
return loss
|
||||||
|
|
||||||
|
# Define batch of initial conditions
|
||||||
|
initial_conditions = [
|
||||||
|
(0.1, 0.0), # Small angle, zero velocity
|
||||||
|
(0.5, 0.0), # Medium angle, zero velocity
|
||||||
|
(1.0, 0.0), # Large angle, zero velocity
|
||||||
|
(1.57, 0.5),
|
||||||
|
(0, -6.28),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Convert initial conditions to tensors
|
||||||
|
batch_size = len(initial_conditions)
|
||||||
|
theta_0 = torch.tensor([[ic[0]] for ic in initial_conditions], dtype=torch.float32) # Shape: (batch_size, 1)
|
||||||
|
omega_0 = torch.tensor([[ic[1]] for ic in initial_conditions], dtype=torch.float32) # Shape: (batch_size, 1)
|
||||||
|
state_0 = torch.cat([theta_0, omega_0], dim=1) # Shape: (batch_size, 2)
|
||||||
|
|
||||||
|
# Simulation parameters
|
||||||
|
T_initial = torch.zeros((batch_size, 1), dtype=torch.float32) # Shape: (batch_size, 1)
|
||||||
|
t_span = torch.linspace(0, 10, 200) # Simulate for 10 seconds
|
||||||
|
target_theta = torch.zeros((batch_size, 1), dtype=torch.float32) # Upright position
|
||||||
|
|
||||||
|
# Define the controller and optimizer
|
||||||
|
controller = PendulumController()
|
||||||
|
optimizer = optim.Adam(controller.parameters(), lr=0.01)
|
||||||
|
pendulum = PendulumDynamics()
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
num_epochs = 10_000
|
||||||
|
losses = []
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Define torque function based on the neural network
|
||||||
|
def torque_fn(state):
|
||||||
|
# Ensure theta and omega have shape (batch_size, time_steps, 1)
|
||||||
|
theta = state[:, :, 0].unsqueeze(-1)
|
||||||
|
omega = state[:, :, 1].unsqueeze(-1)
|
||||||
|
|
||||||
|
# Expand T_initial to match (batch_size, time_steps, 1)
|
||||||
|
T_initial_expanded = T_initial.unsqueeze(1).expand(-1, theta.shape[1], -1)
|
||||||
|
|
||||||
|
# Compute theta_ddot and ensure correct shape
|
||||||
|
theta_ddot = ((pendulum.g / pendulum.R) * torch.sin(theta) + T_initial_expanded / (pendulum.m * pendulum.R**2))
|
||||||
|
#theta_ddot = theta_ddot.unsqueeze(-1) # 🔥 Remove extra dimension, now (batch_size, time_steps, 1)
|
||||||
|
|
||||||
|
# 🔥 Ensure correct concatenation
|
||||||
|
inputs = torch.cat([theta, omega, theta_ddot, T_initial_expanded], dim=2) # Shape: (batch_size, time_steps, 4)
|
||||||
|
|
||||||
|
# Pass through controller (neural network) and apply torque limit
|
||||||
|
torque = controller(inputs) # Predicted torque
|
||||||
|
torque = torch.clamp(torque, -250, 250) # Limit torque
|
||||||
|
|
||||||
|
return torque
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Set the torque function in the pendulum class
|
||||||
|
pendulum.set_torque_fn(torque_fn)
|
||||||
|
|
||||||
|
# Solve the forward dynamics for the **entire batch** at once
|
||||||
|
state_traj = odeint(pendulum, state_0.unsqueeze(1).expand(-1, t_span.shape[0], -1), t_span, method='rk4')
|
||||||
|
|
||||||
|
# Compute torques
|
||||||
|
torques = torque_fn(state_traj) # Shape: (batch_size, time_steps, 1)
|
||||||
|
|
||||||
|
# Compute the loss over all initial conditions
|
||||||
|
loss = loss_fn(state_traj, target_theta, torques)
|
||||||
|
|
||||||
|
# Backpropagation and optimization
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
losses.append(loss.item())
|
||||||
|
|
||||||
|
# Print loss every 50 epochs
|
||||||
|
if epoch % 50 == 0:
|
||||||
|
print(f"Epoch {epoch}/{num_epochs}, Loss: {loss.item()}")
|
||||||
|
|
||||||
|
# Save the trained model
|
||||||
|
torch.save(controller.state_dict(), "controller_batch_training.pth")
|
||||||
|
print("Trained model saved as 'controller_batch_training.pth'.")
|
||||||
BIN
clamped_quadratic_time_penalty/1_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/1_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 51 KiB |
BIN
clamped_quadratic_time_penalty/2_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/2_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 49 KiB |
BIN
clamped_quadratic_time_penalty/3_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/3_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
BIN
clamped_quadratic_time_penalty/4_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/4_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
BIN
clamped_quadratic_time_penalty/5_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/5_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 54 KiB |
BIN
clamped_quadratic_time_penalty/6_validation.png
Normal file
BIN
clamped_quadratic_time_penalty/6_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 60 KiB |
180
clamped_quadratic_time_penalty/trainer.py
Normal file
180
clamped_quadratic_time_penalty/trainer.py
Normal file
@ -0,0 +1,180 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torchdiffeq import odeint
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
"""
|
||||||
|
x_3d: shape (batch_size, 3) => [theta, omega, alpha].
|
||||||
|
Returns shape: (batch_size, 1) => torque.
|
||||||
|
"""
|
||||||
|
raw_torque = self.net(x_3d)
|
||||||
|
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
|
||||||
|
return clamped_torque
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) Define ODE System Using `odeint`
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
class PendulumDynamics3D(nn.Module):
|
||||||
|
"""
|
||||||
|
Defines the ODE system for [theta, omega, alpha] with torque tracking.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, controller):
|
||||||
|
super().__init__()
|
||||||
|
self.controller = controller
|
||||||
|
|
||||||
|
def forward(self, t, state):
|
||||||
|
"""
|
||||||
|
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
|
||||||
|
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
|
||||||
|
"""
|
||||||
|
|
||||||
|
theta = state[:, 0]
|
||||||
|
omega = state[:, 1]
|
||||||
|
alpha = state[:, 2]
|
||||||
|
tau_prev = state[:, 3]
|
||||||
|
|
||||||
|
# Create tensor input for controller: [theta, omega, alpha]
|
||||||
|
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
|
||||||
|
|
||||||
|
# Compute torque using the controller
|
||||||
|
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
|
||||||
|
|
||||||
|
# Compute desired alpha
|
||||||
|
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||||
|
|
||||||
|
# Define ODE system
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_desired - alpha # Relaxation term
|
||||||
|
dtau = tau - tau_prev # Keep track of torque evolution
|
||||||
|
|
||||||
|
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Loss Function
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
def loss_fn(state_traj, t_span):
|
||||||
|
"""
|
||||||
|
Computes loss based on the trajectory: exponentially increasing theta^2 penalty over time.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_traj: Tensor of shape (time_steps, batch_size, 4)
|
||||||
|
t_span: Tensor of time steps (time_steps,)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
total_loss, (loss_theta, loss_omega, loss_torque)
|
||||||
|
"""
|
||||||
|
theta = state_traj[:, :, 0] # (time_steps, batch_size)
|
||||||
|
omega = state_traj[:, :, 1]
|
||||||
|
torque = state_traj[:, :, 3] # tau_prev is stored in state
|
||||||
|
|
||||||
|
# Quadratic weight factor lambda * t**2
|
||||||
|
lambda_factor = 0.5 # Increase for stronger late-time punishment
|
||||||
|
time_weights = (lambda_factor * t_span**2).unsqueeze(1) # Shape: (time_steps, 1)
|
||||||
|
|
||||||
|
# Apply increasing penalty over time
|
||||||
|
loss_theta = 1e2 * torch.mean(time_weights * (torch.cos(theta) - 1)**2)
|
||||||
|
#loss_theta = 1e-1 * torch.mean(time_weights * theta**2)
|
||||||
|
loss_omega = 1e-1 * torch.mean(omega**2)
|
||||||
|
loss_torque = 1e-5 * torch.mean(torque**2)
|
||||||
|
|
||||||
|
# Extract the final theta value from the trajectory
|
||||||
|
final_theta = state_traj[-1, :, 0] # (batch_size,)
|
||||||
|
|
||||||
|
# Compute the loss as the squared error from the target theta
|
||||||
|
loss_final_theta = torch.mean(final_theta ** 2) # Mean squared error
|
||||||
|
|
||||||
|
total_loss = loss_theta #+ loss_omega + loss_torque
|
||||||
|
return total_loss, (loss_theta, loss_omega, loss_torque, loss_final_theta)
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 4) Training Setup
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
# Create the controller and pendulum dynamics model
|
||||||
|
controller = PendulumController3D().to(device)
|
||||||
|
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
|
||||||
|
|
||||||
|
# Define optimizer
|
||||||
|
optimizer = optim.Adam(controller.parameters(), lr=1e-2)
|
||||||
|
|
||||||
|
# Initial conditions: [theta, omega, alpha, tau_prev]
|
||||||
|
initial_conditions = [
|
||||||
|
[0.1, 0.0, 0.0, 0.0], # Small perturbation
|
||||||
|
[-0.5, 0.0, 0.0, 0.0],
|
||||||
|
[6.28, 6.28, 0.0, 0.0],
|
||||||
|
[1.57, 0.5, 0.0, 0.0],
|
||||||
|
[0.0, -6.28, 0.0, 0.0],
|
||||||
|
[1.57, -6.28, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
|
||||||
|
# Convert to torch tensor (batch_size, 4)
|
||||||
|
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
||||||
|
|
||||||
|
# Time grid
|
||||||
|
t_span = torch.linspace(0, 10, 500, device=device) # 10 seconds, 500 steps
|
||||||
|
|
||||||
|
num_epochs = 100_000
|
||||||
|
print_every = 25
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 5) Training Loop
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Integrate the ODE
|
||||||
|
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||||
|
# state_traj shape: (time_steps, batch_size, 4)
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
total_loss, (l_theta, l_omega, l_torque, l_final_theta) = loss_fn(state_traj, t_span)
|
||||||
|
|
||||||
|
# Check for NaN values
|
||||||
|
if torch.isnan(total_loss):
|
||||||
|
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||||
|
optimizer.zero_grad()
|
||||||
|
continue # Skip this iteration
|
||||||
|
|
||||||
|
# Backprop
|
||||||
|
total_loss.backward()
|
||||||
|
#torch.nn.utils.clip_grad_norm_(controller.parameters(), max_norm=1.0) # Fix NaNs
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
|
# Print progress
|
||||||
|
if epoch % print_every == 0:
|
||||||
|
print(f"Epoch {epoch:4d}/{num_epochs} | "
|
||||||
|
f"Total: {total_loss.item():.6f} | "
|
||||||
|
f"Theta: {l_theta.item():.6f} | "
|
||||||
|
f"Omega: {l_omega.item():.6f} | "
|
||||||
|
f"Torque: {l_torque.item():.6f} | "
|
||||||
|
f"Final Theta: {l_final_theta.item():.6f}")
|
||||||
|
|
||||||
|
torch.save(controller.state_dict(), "controller_cpu_clamped_quadratic_time_punish.pth")
|
||||||
|
print("Model saved as 'controller_cpu_clamped_quadratic_time_punish.pth'.")
|
||||||
116
clamped_quadratic_time_penalty/validator.py
Normal file
116
clamped_quadratic_time_penalty/validator.py
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from scipy.integrate import solve_ivp
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(PendulumController3D, self).__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
return self.net(x_3d)
|
||||||
|
|
||||||
|
# Load the trained 3D model
|
||||||
|
controller = PendulumController3D()
|
||||||
|
controller.load_state_dict(torch.load("controller_cpu_clamped_quadratic_time_penalty.pth"))
|
||||||
|
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
|
||||||
|
controller.eval()
|
||||||
|
print("3D Controller loaded.")
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) ODE: State = [theta, omega, alpha].
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
def pendulum_ode_3d(t, state):
|
||||||
|
theta, omega, alpha = state
|
||||||
|
|
||||||
|
# Evaluate NN -> torque
|
||||||
|
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
|
||||||
|
with torch.no_grad():
|
||||||
|
torque = controller(inp).item()
|
||||||
|
# Clamp torque to ±250 for consistency with training
|
||||||
|
torque = np.clip(torque, -250, 250)
|
||||||
|
|
||||||
|
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
|
||||||
|
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_des - alpha
|
||||||
|
return [dtheta, domega, dalpha]
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Validate for multiple initial conditions
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
initial_conditions_3d = [
|
||||||
|
(0.1, 0.0, 0.0),
|
||||||
|
(0.5, 0.0, 0.0),
|
||||||
|
(1.0, 0.0, 0.0),
|
||||||
|
(1.57, 0.5, 0.0),
|
||||||
|
(0.0, -6.28, 0.0),
|
||||||
|
(6.28, 6.28, 0.0),
|
||||||
|
]
|
||||||
|
|
||||||
|
t_span = (0, 20)
|
||||||
|
t_eval = np.linspace(0, 20, 2000)
|
||||||
|
|
||||||
|
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
||||||
|
sol = solve_ivp(
|
||||||
|
pendulum_ode_3d,
|
||||||
|
t_span,
|
||||||
|
[theta0, omega0, alpha0],
|
||||||
|
t_eval=t_eval,
|
||||||
|
method='RK45'
|
||||||
|
)
|
||||||
|
|
||||||
|
t = sol.t
|
||||||
|
theta = sol.y[0]
|
||||||
|
omega = sol.y[1]
|
||||||
|
alpha_arr = sol.y[2]
|
||||||
|
|
||||||
|
# Recompute torque over time
|
||||||
|
torques = []
|
||||||
|
alpha_des_vals = []
|
||||||
|
for (th, om, al) in zip(theta, omega, alpha_arr):
|
||||||
|
with torch.no_grad():
|
||||||
|
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
|
||||||
|
torque_val = np.clip(torque_val, -250, 250)
|
||||||
|
torques.append(torque_val)
|
||||||
|
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
|
||||||
|
torques = np.array(torques)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
fig, ax1 = plt.subplots(figsize=(10,6))
|
||||||
|
ax1.plot(t, theta, label="theta", color="blue")
|
||||||
|
ax1.plot(t, omega, label="omega", color="green")
|
||||||
|
ax1.plot(t, alpha_arr, label="alpha", color="red")
|
||||||
|
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
|
||||||
|
|
||||||
|
ax1.set_xlabel("time [s]")
|
||||||
|
ax1.set_ylabel("theta, omega, alpha")
|
||||||
|
ax1.grid(True)
|
||||||
|
ax1.legend(loc="upper left")
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
|
||||||
|
ax2.set_ylabel("Torque [Nm]")
|
||||||
|
ax2.legend(loc="upper right")
|
||||||
|
|
||||||
|
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.savefig(f"{idx+1}_validation.png")
|
||||||
|
plt.close()
|
||||||
|
print(f"Saved {idx+1}_validation.png")
|
||||||
175
trainer.py
Normal file
175
trainer.py
Normal file
@ -0,0 +1,175 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torchdiffeq import odeint
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
"""
|
||||||
|
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
|
||||||
|
Returns shape: (batch_size, 1) => torque.
|
||||||
|
"""
|
||||||
|
raw_torque = self.net(x_3d)
|
||||||
|
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
|
||||||
|
return clamped_torque
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) Define ODE System Using `odeint`
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
class PendulumDynamics3D(nn.Module):
|
||||||
|
"""
|
||||||
|
Defines the ODE system for [theta, omega, alpha] with torque tracking.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, controller):
|
||||||
|
super().__init__()
|
||||||
|
self.controller = controller
|
||||||
|
|
||||||
|
def forward(self, t, state):
|
||||||
|
"""
|
||||||
|
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
|
||||||
|
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
|
||||||
|
"""
|
||||||
|
|
||||||
|
theta = state[:, 0]
|
||||||
|
omega = state[:, 1]
|
||||||
|
alpha = state[:, 2]
|
||||||
|
tau_prev = state[:, 3]
|
||||||
|
|
||||||
|
|
||||||
|
# Create tensor input for controller: [theta, omega, alpha]
|
||||||
|
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
|
||||||
|
|
||||||
|
# Compute torque using the controller
|
||||||
|
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
|
||||||
|
|
||||||
|
# Compute desired alpha
|
||||||
|
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||||
|
|
||||||
|
# Define ODE system
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_desired - alpha # Relaxation term
|
||||||
|
dtau = tau - tau_prev # Keep track of torque evolution
|
||||||
|
|
||||||
|
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Loss Function
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
def loss_fn(state_traj, t_span):
|
||||||
|
"""
|
||||||
|
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_traj: Tensor of shape (time_steps, batch_size, 4).
|
||||||
|
t_span: Tensor of time steps (time_steps,).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
total_loss, (loss_theta, loss_omega)
|
||||||
|
"""
|
||||||
|
theta = state_traj[:, :, 0] # (time_steps, batch_size)
|
||||||
|
omega = state_traj[:, :, 1] # (time_steps, batch_size)
|
||||||
|
torque = state_traj[:, :, 3]
|
||||||
|
|
||||||
|
# Inverse time weights w(t) = 1 / t
|
||||||
|
# Add a small epsilon to avoid division by zero
|
||||||
|
epsilon = 1e-6
|
||||||
|
inverse_time_weights = 1.0 / (t_span + epsilon).unsqueeze(1) # Shape: (time_steps, 1)
|
||||||
|
linear_time_weights = t_span.unsqueeze(1)
|
||||||
|
|
||||||
|
# Apply inverse time weighting for theta and omega
|
||||||
|
loss_theta = 1e-1 * torch.mean(inverse_time_weights * theta**2) # Weighted theta loss
|
||||||
|
loss_omega = 1e-2 * torch.mean(inverse_time_weights * omega**2) # Weighted omega loss
|
||||||
|
loss_torque = 1e-2 * torch.mean(linear_time_weights * torque**2)
|
||||||
|
|
||||||
|
# Combine the losses
|
||||||
|
total_loss = loss_theta #+ loss_torque
|
||||||
|
|
||||||
|
return total_loss, (loss_theta, loss_omega, loss_torque)
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 4) Training Setup
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
# Create the controller and pendulum dynamics model
|
||||||
|
controller = PendulumController3D().to(device)
|
||||||
|
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
|
||||||
|
|
||||||
|
# Define optimizer
|
||||||
|
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
|
||||||
|
|
||||||
|
# Initial conditions: [theta, omega, alpha, tau_prev]
|
||||||
|
initial_conditions = [
|
||||||
|
[0.1, 0.0, 0.0, 0.0], # Small perturbation
|
||||||
|
[-0.5, 0.0, 0.0, 0.0],
|
||||||
|
[6.28, 6.28, 0.0, 0.0],
|
||||||
|
[1.57, 0.5, 0.0, 0.0],
|
||||||
|
[0.0, -6.28, 0.0, 0.0],
|
||||||
|
[1.57, -6.28, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
|
||||||
|
# Convert to torch tensor (batch_size, 4)
|
||||||
|
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
||||||
|
|
||||||
|
# Time grid
|
||||||
|
t_span = torch.linspace(0, 10, 1000, device=device)
|
||||||
|
|
||||||
|
num_epochs = 100_000
|
||||||
|
print_every = 25
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 5) Training Loop
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Integrate the ODE
|
||||||
|
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||||
|
# state_traj shape: (time_steps, batch_size, 4)
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
total_loss, (l_theta, l_omega, l_torque) = loss_fn(state_traj, t_span)
|
||||||
|
|
||||||
|
# Check for NaN values
|
||||||
|
if torch.isnan(total_loss):
|
||||||
|
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||||
|
optimizer.zero_grad()
|
||||||
|
continue # Skip this iteration
|
||||||
|
|
||||||
|
# Backprop
|
||||||
|
total_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
|
# Print progress
|
||||||
|
if epoch % print_every == 0:
|
||||||
|
print(f"Epoch {epoch:4d}/{num_epochs} | "
|
||||||
|
f"Total: {total_loss.item():.6f} | "
|
||||||
|
f"Theta: {l_theta.item():.6f} | "
|
||||||
|
f"Omega: {l_omega.item():.6f} | "
|
||||||
|
f"Torque: {l_torque.item():.6f}")
|
||||||
|
|
||||||
|
torch.save(controller.state_dict(), "controller_cpu_clamped_inverse_time_punish.pth")
|
||||||
|
print("Model saved as 'controller_cpu_clamped_inverse_time_punish.pth'.")
|
||||||
116
validator.py
Normal file
116
validator.py
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from scipy.integrate import solve_ivp
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(PendulumController3D, self).__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
return self.net(x_3d)
|
||||||
|
|
||||||
|
# Load the trained 3D model
|
||||||
|
controller = PendulumController3D()
|
||||||
|
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_punish.pth"))
|
||||||
|
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
|
||||||
|
controller.eval()
|
||||||
|
print("3D Controller loaded.")
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) ODE: State = [theta, omega, alpha].
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
def pendulum_ode_3d(t, state):
|
||||||
|
theta, omega, alpha = state
|
||||||
|
|
||||||
|
# Evaluate NN -> torque
|
||||||
|
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
|
||||||
|
with torch.no_grad():
|
||||||
|
torque = controller(inp).item()
|
||||||
|
# Clamp torque to ±250 for consistency with training
|
||||||
|
torque = np.clip(torque, -250, 250)
|
||||||
|
|
||||||
|
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
|
||||||
|
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_des - alpha
|
||||||
|
return [dtheta, domega, dalpha]
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Validate for multiple initial conditions
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
initial_conditions_3d = [
|
||||||
|
(0.1, 0.0, 0.0),
|
||||||
|
(0.5, 0.0, 0.0),
|
||||||
|
(1.0, 0.0, 0.0),
|
||||||
|
(1.57, 0.5, 0.0),
|
||||||
|
(0.0, -6.28, 0.0),
|
||||||
|
(6.28, 6.28, 0.0),
|
||||||
|
]
|
||||||
|
|
||||||
|
t_span = (0, 20)
|
||||||
|
t_eval = np.linspace(0, 20, 2000)
|
||||||
|
|
||||||
|
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
||||||
|
sol = solve_ivp(
|
||||||
|
pendulum_ode_3d,
|
||||||
|
t_span,
|
||||||
|
[theta0, omega0, alpha0],
|
||||||
|
t_eval=t_eval,
|
||||||
|
method='RK45'
|
||||||
|
)
|
||||||
|
|
||||||
|
t = sol.t
|
||||||
|
theta = sol.y[0]
|
||||||
|
omega = sol.y[1]
|
||||||
|
alpha_arr = sol.y[2]
|
||||||
|
|
||||||
|
# Recompute torque over time
|
||||||
|
torques = []
|
||||||
|
alpha_des_vals = []
|
||||||
|
for (th, om, al) in zip(theta, omega, alpha_arr):
|
||||||
|
with torch.no_grad():
|
||||||
|
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
|
||||||
|
torque_val = np.clip(torque_val, -250, 250)
|
||||||
|
torques.append(torque_val)
|
||||||
|
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
|
||||||
|
torques = np.array(torques)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
fig, ax1 = plt.subplots(figsize=(10,6))
|
||||||
|
ax1.plot(t, theta, label="theta", color="blue")
|
||||||
|
ax1.plot(t, omega, label="omega", color="green")
|
||||||
|
ax1.plot(t, alpha_arr, label="alpha", color="red")
|
||||||
|
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
|
||||||
|
|
||||||
|
ax1.set_xlabel("time [s]")
|
||||||
|
ax1.set_ylabel("theta, omega, alpha")
|
||||||
|
ax1.grid(True)
|
||||||
|
ax1.legend(loc="upper left")
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
|
||||||
|
ax2.set_ylabel("Torque [Nm]")
|
||||||
|
ax2.legend(loc="upper right")
|
||||||
|
|
||||||
|
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.savefig(f"{idx+1}_validation.png")
|
||||||
|
plt.close()
|
||||||
|
print(f"Saved {idx+1}_validation.png")
|
||||||
Loading…
Reference in New Issue
Block a user