Inverted-Pendulum-Neural-Ne.../validator.py

117 lines
3.6 KiB
Python

import torch
import torch.nn as nn
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
def __init__(self):
super(PendulumController3D, self).__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
return self.net(x_3d)
# Load the trained 3D model
controller = PendulumController3D()
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_punish.pth"))
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
controller.eval()
print("3D Controller loaded.")
# ----------------------------------------------------------------
# 2) ODE: State = [theta, omega, alpha].
# ----------------------------------------------------------------
m = 10.0
g = 9.81
R = 1.0
def pendulum_ode_3d(t, state):
theta, omega, alpha = state
# Evaluate NN -> torque
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp).item()
# Clamp torque to ±250 for consistency with training
torque = np.clip(torque, -250, 250)
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
dtheta = omega
domega = alpha
dalpha = alpha_des - alpha
return [dtheta, domega, dalpha]
# ----------------------------------------------------------------
# 3) Validate for multiple initial conditions
# ----------------------------------------------------------------
initial_conditions_3d = [
(0.1, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.0),
(1.57, 0.5, 0.0),
(0.0, -6.28, 0.0),
(6.28, 6.28, 0.0),
]
t_span = (0, 20)
t_eval = np.linspace(0, 20, 2000)
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
sol = solve_ivp(
pendulum_ode_3d,
t_span,
[theta0, omega0, alpha0],
t_eval=t_eval,
method='RK45'
)
t = sol.t
theta = sol.y[0]
omega = sol.y[1]
alpha_arr = sol.y[2]
# Recompute torque over time
torques = []
alpha_des_vals = []
for (th, om, al) in zip(theta, omega, alpha_arr):
with torch.no_grad():
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
torque_val = np.clip(torque_val, -250, 250)
torques.append(torque_val)
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
torques = np.array(torques)
# Plot
fig, ax1 = plt.subplots(figsize=(10,6))
ax1.plot(t, theta, label="theta", color="blue")
ax1.plot(t, omega, label="omega", color="green")
ax1.plot(t, alpha_arr, label="alpha", color="red")
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
ax1.set_xlabel("time [s]")
ax1.set_ylabel("theta, omega, alpha")
ax1.grid(True)
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
ax2.set_ylabel("Torque [Nm]")
ax2.legend(loc="upper right")
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
plt.tight_layout()
plt.savefig(f"{idx+1}_validation.png")
plt.close()
print(f"Saved {idx+1}_validation.png")