Inverse pendulum testing

This commit is contained in:
judsonupchurch 2025-02-01 20:34:19 +00:00
commit f76fa8709d
8 changed files with 291 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View File

@ -0,0 +1,175 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torchdiffeq import odeint
import numpy as np
import matplotlib.pyplot as plt
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
"""
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
Returns shape: (batch_size, 1) => torque.
"""
raw_torque = self.net(x_3d)
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
return clamped_torque
# ----------------------------------------------------------------
# 2) Define ODE System Using `odeint`
# ----------------------------------------------------------------
m = 10.0
g = 9.81
R = 1.0
class PendulumDynamics3D(nn.Module):
"""
Defines the ODE system for [theta, omega, alpha] with torque tracking.
"""
def __init__(self, controller):
super().__init__()
self.controller = controller
def forward(self, t, state):
"""
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
"""
theta = state[:, 0]
omega = state[:, 1]
alpha = state[:, 2]
tau_prev = state[:, 3]
# Create tensor input for controller: [theta, omega, alpha]
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
# Compute torque using the controller
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
# Compute desired alpha
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
# Define ODE system
dtheta = omega
domega = alpha
dalpha = alpha_desired - alpha # Relaxation term
dtau = tau - tau_prev # Keep track of torque evolution
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
# ----------------------------------------------------------------
# 3) Loss Function
# ----------------------------------------------------------------
def loss_fn(state_traj, t_span):
"""
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
Args:
state_traj: Tensor of shape (time_steps, batch_size, 4).
t_span: Tensor of time steps (time_steps,).
Returns:
total_loss, (loss_theta, loss_omega)
"""
theta = state_traj[:, :, 0] # (time_steps, batch_size)
omega = state_traj[:, :, 1] # (time_steps, batch_size)
torque = state_traj[:, :, 3]
# Inverse time weights w(t) = 1 / t
# Add a small epsilon to avoid division by zero
epsilon = 1e-6
inverse_time_weights = 1.0 / (t_span + epsilon).unsqueeze(1) # Shape: (time_steps, 1)
linear_time_weights = t_span.unsqueeze(1)
# Apply inverse time weighting for theta and omega
loss_theta = 1e-1 * torch.mean(inverse_time_weights * theta**2) # Weighted theta loss
loss_omega = 1e-2 * torch.mean(inverse_time_weights * omega**2) # Weighted omega loss
loss_torque = 1e-2 * torch.mean(linear_time_weights * torque**2)
# Combine the losses
total_loss = loss_theta #+ loss_torque
return total_loss, (loss_theta, loss_omega, loss_torque)
# ----------------------------------------------------------------
# 4) Training Setup
# ----------------------------------------------------------------
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
# Create the controller and pendulum dynamics model
controller = PendulumController3D().to(device)
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
# Define optimizer
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
# Initial conditions: [theta, omega, alpha, tau_prev]
initial_conditions = [
[0.1, 0.0, 0.0, 0.0], # Small perturbation
[-0.5, 0.0, 0.0, 0.0],
[6.28, 6.28, 0.0, 0.0],
[1.57, 0.5, 0.0, 0.0],
[0.0, -6.28, 0.0, 0.0],
[1.57, -6.28, 0.0, 0.0],
]
# Convert to torch tensor (batch_size, 4)
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
# Time grid
t_span = torch.linspace(0, 10, 1000, device=device)
num_epochs = 100_000
print_every = 25
# ----------------------------------------------------------------
# 5) Training Loop
# ----------------------------------------------------------------
for epoch in range(num_epochs):
optimizer.zero_grad()
# Integrate the ODE
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
# state_traj shape: (time_steps, batch_size, 4)
# Compute loss
total_loss, (l_theta, l_omega, l_torque) = loss_fn(state_traj, t_span)
# Check for NaN values
if torch.isnan(total_loss):
print(f"NaN detected at epoch {epoch}. Skipping step.")
optimizer.zero_grad()
continue # Skip this iteration
# Backprop
total_loss.backward()
optimizer.step()
# Print progress
if epoch % print_every == 0:
print(f"Epoch {epoch:4d}/{num_epochs} | "
f"Total: {total_loss.item():.6f} | "
f"Theta: {l_theta.item():.6f} | "
f"Omega: {l_omega.item():.6f} | "
f"Torque: {l_torque.item():.6f}")
torch.save(controller.state_dict(), "controller_cpu_clamped_inverse_time_punish.pth")
print("Model saved as 'controller_cpu_clamped_inverse_time_punish.pth'.")

View File

@ -0,0 +1,116 @@
import torch
import torch.nn as nn
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
def __init__(self):
super(PendulumController3D, self).__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
return self.net(x_3d)
# Load the trained 3D model
controller = PendulumController3D()
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_penalty.pth"))
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
controller.eval()
print("3D Controller loaded.")
# ----------------------------------------------------------------
# 2) ODE: State = [theta, omega, alpha].
# ----------------------------------------------------------------
m = 10.0
g = 9.81
R = 1.0
def pendulum_ode_3d(t, state):
theta, omega, alpha = state
# Evaluate NN -> torque
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp).item()
# Clamp torque to ±250 for consistency with training
torque = np.clip(torque, -250, 250)
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
dtheta = omega
domega = alpha
dalpha = alpha_des - alpha
return [dtheta, domega, dalpha]
# ----------------------------------------------------------------
# 3) Validate for multiple initial conditions
# ----------------------------------------------------------------
initial_conditions_3d = [
(0.1, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.0),
(1.57, 0.5, 0.0),
(0.0, -6.28, 0.0),
(6.28, 6.28, 0.0),
]
t_span = (0, 20)
t_eval = np.linspace(0, 20, 2000)
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
sol = solve_ivp(
pendulum_ode_3d,
t_span,
[theta0, omega0, alpha0],
t_eval=t_eval,
method='RK45'
)
t = sol.t
theta = sol.y[0]
omega = sol.y[1]
alpha_arr = sol.y[2]
# Recompute torque over time
torques = []
alpha_des_vals = []
for (th, om, al) in zip(theta, omega, alpha_arr):
with torch.no_grad():
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
torque_val = np.clip(torque_val, -250, 250)
torques.append(torque_val)
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
torques = np.array(torques)
# Plot
fig, ax1 = plt.subplots(figsize=(10,6))
ax1.plot(t, theta, label="theta", color="blue")
ax1.plot(t, omega, label="omega", color="green")
ax1.plot(t, alpha_arr, label="alpha", color="red")
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
ax1.set_xlabel("time [s]")
ax1.set_ylabel("theta, omega, alpha")
ax1.grid(True)
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
ax2.set_ylabel("Torque [Nm]")
ax2.legend(loc="upper right")
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
plt.tight_layout()
plt.savefig(f"{idx+1}_validation.png")
plt.close()
print(f"Saved {idx+1}_validation.png")