Inverse pendulum testing
This commit is contained in:
commit
f76fa8709d
BIN
clamped_inverse_time_penalty/1_validation.png
Normal file
BIN
clamped_inverse_time_penalty/1_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 58 KiB |
BIN
clamped_inverse_time_penalty/2_validation.png
Normal file
BIN
clamped_inverse_time_penalty/2_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
BIN
clamped_inverse_time_penalty/3_validation.png
Normal file
BIN
clamped_inverse_time_penalty/3_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 61 KiB |
BIN
clamped_inverse_time_penalty/4_validation.png
Normal file
BIN
clamped_inverse_time_penalty/4_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
BIN
clamped_inverse_time_penalty/5_validation.png
Normal file
BIN
clamped_inverse_time_penalty/5_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 59 KiB |
BIN
clamped_inverse_time_penalty/6_validation.png
Normal file
BIN
clamped_inverse_time_penalty/6_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 62 KiB |
175
clamped_inverse_time_penalty/trainer.py
Normal file
175
clamped_inverse_time_penalty/trainer.py
Normal file
@ -0,0 +1,175 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torchdiffeq import odeint
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||
# ----------------------------------------------------------------
|
||||
class PendulumController3D(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(3, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 1)
|
||||
)
|
||||
|
||||
def forward(self, x_3d):
|
||||
"""
|
||||
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
|
||||
Returns shape: (batch_size, 1) => torque.
|
||||
"""
|
||||
raw_torque = self.net(x_3d)
|
||||
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
|
||||
return clamped_torque
|
||||
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 2) Define ODE System Using `odeint`
|
||||
# ----------------------------------------------------------------
|
||||
m = 10.0
|
||||
g = 9.81
|
||||
R = 1.0
|
||||
|
||||
class PendulumDynamics3D(nn.Module):
|
||||
"""
|
||||
Defines the ODE system for [theta, omega, alpha] with torque tracking.
|
||||
"""
|
||||
|
||||
def __init__(self, controller):
|
||||
super().__init__()
|
||||
self.controller = controller
|
||||
|
||||
def forward(self, t, state):
|
||||
"""
|
||||
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
|
||||
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
|
||||
"""
|
||||
|
||||
theta = state[:, 0]
|
||||
omega = state[:, 1]
|
||||
alpha = state[:, 2]
|
||||
tau_prev = state[:, 3]
|
||||
|
||||
|
||||
# Create tensor input for controller: [theta, omega, alpha]
|
||||
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
|
||||
|
||||
# Compute torque using the controller
|
||||
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
|
||||
|
||||
# Compute desired alpha
|
||||
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||
|
||||
# Define ODE system
|
||||
dtheta = omega
|
||||
domega = alpha
|
||||
dalpha = alpha_desired - alpha # Relaxation term
|
||||
dtau = tau - tau_prev # Keep track of torque evolution
|
||||
|
||||
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 3) Loss Function
|
||||
# ----------------------------------------------------------------
|
||||
def loss_fn(state_traj, t_span):
|
||||
"""
|
||||
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
|
||||
|
||||
Args:
|
||||
state_traj: Tensor of shape (time_steps, batch_size, 4).
|
||||
t_span: Tensor of time steps (time_steps,).
|
||||
|
||||
Returns:
|
||||
total_loss, (loss_theta, loss_omega)
|
||||
"""
|
||||
theta = state_traj[:, :, 0] # (time_steps, batch_size)
|
||||
omega = state_traj[:, :, 1] # (time_steps, batch_size)
|
||||
torque = state_traj[:, :, 3]
|
||||
|
||||
# Inverse time weights w(t) = 1 / t
|
||||
# Add a small epsilon to avoid division by zero
|
||||
epsilon = 1e-6
|
||||
inverse_time_weights = 1.0 / (t_span + epsilon).unsqueeze(1) # Shape: (time_steps, 1)
|
||||
linear_time_weights = t_span.unsqueeze(1)
|
||||
|
||||
# Apply inverse time weighting for theta and omega
|
||||
loss_theta = 1e-1 * torch.mean(inverse_time_weights * theta**2) # Weighted theta loss
|
||||
loss_omega = 1e-2 * torch.mean(inverse_time_weights * omega**2) # Weighted omega loss
|
||||
loss_torque = 1e-2 * torch.mean(linear_time_weights * torque**2)
|
||||
|
||||
# Combine the losses
|
||||
total_loss = loss_theta #+ loss_torque
|
||||
|
||||
return total_loss, (loss_theta, loss_omega, loss_torque)
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 4) Training Setup
|
||||
# ----------------------------------------------------------------
|
||||
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Create the controller and pendulum dynamics model
|
||||
controller = PendulumController3D().to(device)
|
||||
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
|
||||
|
||||
# Define optimizer
|
||||
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
|
||||
|
||||
# Initial conditions: [theta, omega, alpha, tau_prev]
|
||||
initial_conditions = [
|
||||
[0.1, 0.0, 0.0, 0.0], # Small perturbation
|
||||
[-0.5, 0.0, 0.0, 0.0],
|
||||
[6.28, 6.28, 0.0, 0.0],
|
||||
[1.57, 0.5, 0.0, 0.0],
|
||||
[0.0, -6.28, 0.0, 0.0],
|
||||
[1.57, -6.28, 0.0, 0.0],
|
||||
]
|
||||
|
||||
# Convert to torch tensor (batch_size, 4)
|
||||
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
||||
|
||||
# Time grid
|
||||
t_span = torch.linspace(0, 10, 1000, device=device)
|
||||
|
||||
num_epochs = 100_000
|
||||
print_every = 25
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 5) Training Loop
|
||||
# ----------------------------------------------------------------
|
||||
for epoch in range(num_epochs):
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Integrate the ODE
|
||||
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||
# state_traj shape: (time_steps, batch_size, 4)
|
||||
|
||||
# Compute loss
|
||||
total_loss, (l_theta, l_omega, l_torque) = loss_fn(state_traj, t_span)
|
||||
|
||||
# Check for NaN values
|
||||
if torch.isnan(total_loss):
|
||||
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||
optimizer.zero_grad()
|
||||
continue # Skip this iteration
|
||||
|
||||
# Backprop
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Print progress
|
||||
if epoch % print_every == 0:
|
||||
print(f"Epoch {epoch:4d}/{num_epochs} | "
|
||||
f"Total: {total_loss.item():.6f} | "
|
||||
f"Theta: {l_theta.item():.6f} | "
|
||||
f"Omega: {l_omega.item():.6f} | "
|
||||
f"Torque: {l_torque.item():.6f}")
|
||||
|
||||
torch.save(controller.state_dict(), "controller_cpu_clamped_inverse_time_punish.pth")
|
||||
print("Model saved as 'controller_cpu_clamped_inverse_time_punish.pth'.")
|
||||
116
clamped_inverse_time_penalty/validator.py
Normal file
116
clamped_inverse_time_penalty/validator.py
Normal file
@ -0,0 +1,116 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from scipy.integrate import solve_ivp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||
# ----------------------------------------------------------------
|
||||
class PendulumController3D(nn.Module):
|
||||
def __init__(self):
|
||||
super(PendulumController3D, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(3, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 1)
|
||||
)
|
||||
|
||||
def forward(self, x_3d):
|
||||
return self.net(x_3d)
|
||||
|
||||
# Load the trained 3D model
|
||||
controller = PendulumController3D()
|
||||
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_penalty.pth"))
|
||||
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
|
||||
controller.eval()
|
||||
print("3D Controller loaded.")
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 2) ODE: State = [theta, omega, alpha].
|
||||
# ----------------------------------------------------------------
|
||||
m = 10.0
|
||||
g = 9.81
|
||||
R = 1.0
|
||||
|
||||
def pendulum_ode_3d(t, state):
|
||||
theta, omega, alpha = state
|
||||
|
||||
# Evaluate NN -> torque
|
||||
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
|
||||
with torch.no_grad():
|
||||
torque = controller(inp).item()
|
||||
# Clamp torque to ±250 for consistency with training
|
||||
torque = np.clip(torque, -250, 250)
|
||||
|
||||
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
|
||||
|
||||
dtheta = omega
|
||||
domega = alpha
|
||||
dalpha = alpha_des - alpha
|
||||
return [dtheta, domega, dalpha]
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# 3) Validate for multiple initial conditions
|
||||
# ----------------------------------------------------------------
|
||||
initial_conditions_3d = [
|
||||
(0.1, 0.0, 0.0),
|
||||
(0.5, 0.0, 0.0),
|
||||
(1.0, 0.0, 0.0),
|
||||
(1.57, 0.5, 0.0),
|
||||
(0.0, -6.28, 0.0),
|
||||
(6.28, 6.28, 0.0),
|
||||
]
|
||||
|
||||
t_span = (0, 20)
|
||||
t_eval = np.linspace(0, 20, 2000)
|
||||
|
||||
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
||||
sol = solve_ivp(
|
||||
pendulum_ode_3d,
|
||||
t_span,
|
||||
[theta0, omega0, alpha0],
|
||||
t_eval=t_eval,
|
||||
method='RK45'
|
||||
)
|
||||
|
||||
t = sol.t
|
||||
theta = sol.y[0]
|
||||
omega = sol.y[1]
|
||||
alpha_arr = sol.y[2]
|
||||
|
||||
# Recompute torque over time
|
||||
torques = []
|
||||
alpha_des_vals = []
|
||||
for (th, om, al) in zip(theta, omega, alpha_arr):
|
||||
with torch.no_grad():
|
||||
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
|
||||
torque_val = np.clip(torque_val, -250, 250)
|
||||
torques.append(torque_val)
|
||||
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
|
||||
torques = np.array(torques)
|
||||
|
||||
# Plot
|
||||
fig, ax1 = plt.subplots(figsize=(10,6))
|
||||
ax1.plot(t, theta, label="theta", color="blue")
|
||||
ax1.plot(t, omega, label="omega", color="green")
|
||||
ax1.plot(t, alpha_arr, label="alpha", color="red")
|
||||
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
|
||||
|
||||
ax1.set_xlabel("time [s]")
|
||||
ax1.set_ylabel("theta, omega, alpha")
|
||||
ax1.grid(True)
|
||||
ax1.legend(loc="upper left")
|
||||
|
||||
ax2 = ax1.twinx()
|
||||
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
|
||||
ax2.set_ylabel("Torque [Nm]")
|
||||
ax2.legend(loc="upper right")
|
||||
|
||||
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||
plt.tight_layout()
|
||||
plt.savefig(f"{idx+1}_validation.png")
|
||||
plt.close()
|
||||
print(f"Saved {idx+1}_validation.png")
|
||||
Loading…
Reference in New Issue
Block a user