Combined-Sensor-Uncertainty/code/System_Uncertainty_Monte_Carlo.py
SchrodingerError 3c59598d38 Initial Commit
2024-08-14 14:40:12 -05:00

672 lines
30 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import multiprocessing
import os
import shutil
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from PDF_Generator import PDFGenerator
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from inputs.Inputs import Input
class SystemUncertaintyMonteCarlo():
def __init__(self, system_input: 'Input'):
self.system_input = system_input
self.true_value = self.system_input.get_true()
output_dir = "Output Files"
# Ensure the output directory is fresh each time
if os.path.exists(output_dir):
shutil.rmtree(output_dir) # Remove the existing directory with all its content
# Recreate the directory
os.makedirs(output_dir)
# Setup the PDF Generator
self.pdf = PDFGenerator()
self.pdf.add_page()
self.pdf_report_file = 'Output Files\\System Uncertainty Report.pdf'
self._generate_system_setup()
def save_report(self) -> None:
'''Saves the pdf'''
self.pdf.make_pdf_from_memory(self.pdf_report_file)
print(f"Saved PDF to {self.pdf_report_file}")
def _generate_definitions(self) -> None:
self.pdf.add_header_memory("Definitions")
self.pdf.add_text_memory("True System Output Value", bold=True, newline=False)
self.pdf.add_text_memory("True output of the system without any noise.", indent=1)
self.pdf.add_text_memory("Average of Monte-Carlo", bold=True, newline=False)
self.pdf.add_text_memory("Average value of all runs with applied error.", indent=1)
self.pdf.add_text_memory("Max Error 95% of the Time/max_2std_error", bold=True, newline=False)
self.pdf.add_text_memory("95% of all readings are within this error of the true value.", indent=1)
self.pdf.add_text_memory("Max Error 99.73% of the Time/max_3std_error", bold=True, newline=False)
self.pdf.add_text_memory("99.73% of all readings are within this error of the true value.", indent=1)
self.pdf.add_text_memory("Isolated Sensitivity Analysis", bold=True, newline=False)
self.pdf.add_text_memory("Only the specified input has applied error which has an 'error gain' multiplied to only its error. Every other input has zero applied error.", indent=1)
self.pdf.add_text_memory("Non-Isolated Sensitivity Analysis", bold=True, newline=False)
self.pdf.add_text_memory("Every input has applied error. The specified input has an 'error gain' multiplied to only its error.", indent=1)
self.pdf.add_text_memory("Sensitivity Ratio", bold=True, newline=False)
self.pdf.add_text_memory("The ratio of (specified error gain):(error with error gain = 1).", indent=1)
self.pdf.add_text_memory("Confidence Level of Regression Fiting", bold=True, newline=False)
self.pdf.add_text_memory("The regression fits up to a 4th degree polynomial, exponential, or log function. Confidence is 1 / (1st best RMSE):(2nd best RMSE).", indent=1)
self.pdf.add_text_memory("Range Analysis", bold=True, newline=False)
self.pdf.add_text_memory("The specified input has its 'true value' swept over a range while other inputs are held constant. Error is applied throughout the system.", indent=1)
def _generate_system_setup(self) -> None:
self._generate_definitions()
self.pdf.add_page_memory()
print("System Governing Equation:")
self.pdf.add_header_memory("System Governing Equation")
arithmetic_string = self.system_input.get_arithmetic()
print(arithmetic_string)
self.pdf.add_text_memory(arithmetic_string)
print("\n")
print("System Error Settings:")
self.pdf.add_newline_memory()
self.pdf.add_header_memory("System Error Settings")
string = "\t"
string += self.system_input.get_input_errors()
string = string.replace("\n\n\n", "\n\n")
string = string.replace("\n", "\n\t")
string = string.rstrip() # Remove trailing newlines and other whitespace characters
print(string)
print("\n"*3)
self.pdf.add_text_memory(string)
def _print_and_save(self, text: str, indent: int = 0) -> None:
'''Prints a string to the terminal and to a file'''
indents = "\t" * indent
print(indents, end="")
print(text)
with open(self.report_file, 'a', encoding='utf-8') as f: # Open file in append mode with UTF-8 encoding
f.write(indents)
f.write(text + '\n')
def _calculate_metrics(self, results: list[float]) -> dict:
results_array = np.array(results)
# Calculate key statistics
average = np.mean(results_array)
average_percent_difference = (average - self.true_value) / self.true_value * 100
std_dev = np.std(results_array)
median = np.median(results_array)
min_val = np.min(results_array)
max_val = np.max(results_array)
std_dev_percent = (std_dev / self.true_value) * 100
mean_absolute_error = np.mean(np.abs(results_array - self.true_value))
mean_absolute_percent_error = (mean_absolute_error) / self.true_value * 100
max_2std_error = max(abs(average + 2*std_dev - self.true_value), abs(average - 2*std_dev - self.true_value))
max_2std_percent_error = max_2std_error / self.true_value * 100
max_3std_error = max(abs(average + 3*std_dev - self.true_value), abs(average - 3*std_dev - self.true_value))
max_3std_percent_error = max_3std_error / self.true_value * 100
# Organize them into a dictionary
metrics = {
"true_value": self.true_value,
"median": median,
"average": average,
"average_percent_difference": average_percent_difference,
"min_val": min_val,
"max_val": max_val,
"std_dev": std_dev,
"std_dev_percent": std_dev_percent,
"mean_absolute_error": mean_absolute_error,
"mean_absolute_percent_error": mean_absolute_percent_error,
"max_2std_error": max_2std_error,
"max_2std_percent_error": max_2std_percent_error,
"max_3std_error": max_3std_error,
"max_3std_percent_error": max_3std_percent_error,
}
return metrics
def _run_system_monte_carlo(self, num_of_tests) -> list[float]:
results = []
for _ in range(num_of_tests):
try:
value = self.system_input.get_reading()
results.append(value)
except:
continue
return results
def _run_system_monte_carlo_multiprocessed(self, num_of_tests: int, num_of_processes) -> list[float]:
if num_of_processes == 1:
return self._run_system_monte_carlo(num_of_tests)
# Split the number of tests among the processes
tests_per_process = num_of_tests // num_of_processes
remaining_tests = num_of_tests % num_of_processes
# Create a list to store the number of tests each process will run
tasks = [tests_per_process] * num_of_processes
for i in range(remaining_tests):
tasks[i] += 1
# Create a pool of worker processes
with multiprocessing.Pool(processes=num_of_processes) as pool:
# Map the tasks to the worker processes
results = pool.starmap(self._run_system_monte_carlo, [(task,) for task in tasks])
# Flatten the list of results
results = np.array([item for sublist in results for item in sublist])
results_without_none = np.array([item for item in results if item is not None])
return results_without_none
def _generate_system_histogram(self, results: list[float], with_outliers: bool = True) -> str:
results = np.array(results)
# Calculate IQR and identify outliers
Q1 = np.percentile(results, 25)
Q3 = np.percentile(results, 75)
IQR = Q3 - Q1
outliers = (results < (Q1 - 1.5 * IQR)) | (results > (Q3 + 1.5 * IQR))
# Filter results if outliers are not included
if not with_outliers:
results = results[~outliers]
plt.figure(figsize=(18, 6))
# Histogram of filtered data
plt.hist(results, bins=100, edgecolor='black', alpha=0.7)
plt.axvline(x=self.true_value, color='r', linestyle='--', label='True Value')
plt.title('Histogram of System Results' + (' with Outliers' if with_outliers else ' without Outliers'))
plt.xlabel('System Output')
plt.ylabel('Frequency')
plt.legend() # Show the legend for the true value line
# Save the figure to a file
if not os.path.exists("Output Files\\System"):
os.makedirs("Output Files\\System") # Create the directory if it does not exist
filename = "Output Files\\System\\Histogram" + (' with Outliers' if with_outliers else ' without Outliers') + ".png"
print(f"\tSaving '{filename}'")
plt.savefig(filename, dpi=500)
plt.close()
return filename
def _generate_system_scatter_plot(self, results: list[float], with_outliers: bool = True) -> str:
'''Makes a scatter plot and saves. Returns the file name it saves to'''
results = np.array(results)
# Calculate IQR and identify outliers
Q1 = np.percentile(results, 25)
Q3 = np.percentile(results, 75)
IQR = Q3 - Q1
outliers = (results < (Q1 - 1.5 * IQR)) | (results > (Q3 + 1.5 * IQR))
# Filter results if outliers are not included
if not with_outliers:
results_filtered = results[~outliers]
# Check if the number of results is more than 1000, randomly sample if so
if len(results) > 1000:
results_filtered = np.random.choice(results, 1000, replace=False)
else:
results_filtered = results
# Generate indices for x-axis
indices = np.arange(len(results_filtered))
# Calculate mean and standard deviations
mean = np.mean(results)
std_dev = np.std(results)
# Scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(indices, results_filtered, alpha=0.6, marker='o')
plt.axhline(y=self.true_value, color='r', linestyle='--', label='True Value')
plt.axhline(y=mean + std_dev, color='black', linestyle='--', label='1st Dev')
plt.axhline(y=mean - std_dev, color='black', linestyle='--')
plt.title('Scatter Plot of System Results' + (' with Outliers' if with_outliers else ' without Outliers'))
plt.xlabel('Run #')
plt.ylabel('System Output')
plt.legend()
# Save the figure to a file
if not os.path.exists("Output Files\\System"):
os.makedirs("Output Files\\System") # Create the directory if it does not exist
filename = "Output Files\\System\\Scatter" + (' with Outliers' if with_outliers else ' without Outliers') + ".png"
print(f"\tSaving '{filename}'")
plt.savefig(filename, dpi=500)
plt.close()
return filename
def _generate_system_report(self, metrics: dict, indent: int = 0) -> None:
self.pdf.add_metrics_list_memory(metrics, indent)
def perform_system_analysis(self, monte_carlo_settings:dict = dict()) -> None:
num_of_tests: int = monte_carlo_settings.get("num_runs", 1_000)
num_of_processes: int = monte_carlo_settings.get("num_processes", 10)
print(f"System Monte-Carlo Results:")
self.pdf.add_page_memory()
self.pdf.add_header_memory("Entire System Text Results", level=2)
results = self._run_system_monte_carlo_multiprocessed(num_of_tests, num_of_processes)
metrics = self._calculate_metrics(results)
self._generate_system_report(metrics, indent=1)
print(f"Plotting Entire Monte-Carlo Results:")
self.pdf.add_page_memory()
self.pdf.add_header_memory("Entire System Histograms", level=2)
filename = self._generate_system_histogram(results, with_outliers=True)
self.pdf.add_centered_image_memory(filename, width_ratio=1.15)
filename = self._generate_system_histogram(results, with_outliers=False)
self.pdf.add_centered_image_memory(filename, width_ratio=1.15)
self.pdf.add_page_memory()
self.pdf.add_header_memory("Entire System Scatter Plots", level=2)
filename = self._generate_system_scatter_plot(results, with_outliers=True)
self.pdf.add_centered_image_memory(filename, width_ratio=1)
self._generate_system_scatter_plot(results, with_outliers=False)
self.pdf.add_centered_image_memory(filename, width_ratio=1)
print("\n")
def _fit_to_polynomial(self, x_values: np.ndarray, y_values: np.ndarray) -> tuple[str, float, str]:
"""
Fit the given x and y values to various models up to a polynomial degree, determine which fits best,
provide a confidence measure based on RMSE comparisons, and return the best fit function as a string up to the degree of the best model.
Parameters:
x_values (np.ndarray): Array of x values, must be positive for ln(x) and all y_values must be positive for exponential fit.
y_values (np.ndarray): Array of y values, must be positive for the exponential and logarithmic fits.
Returns:
tuple: The best fitting model type, a confidence score, and the best fit function as a string.
"""
models = {
"constant": np.ones_like(x_values),
"linear": x_values,
"quadratic": x_values**2,
"cubic": x_values**3,
"quartic": x_values**4,
"exponential": x_values, # will use log(y) for fitting
"logarithmic": np.log(x_values)
}
best_model = None
min_rmse = np.inf
rmse_values = {}
coefficients = {}
# Initial fit to find the best model type
for model_name, model_values in models.items():
# Prepare the response variable and design matrix
if model_name == "exponential":
transformed_y = np.log(y_values)
else:
transformed_y = y_values
A = np.column_stack((np.ones_like(x_values), model_values))
try:
# Solve the least squares problem
coeffs, _, _, _ = np.linalg.lstsq(A, transformed_y, rcond=None)
coefficients[model_name] = coeffs # Store coefficients
# Predict y values using the model
if model_name == "exponential":
y_pred = np.exp(A @ coeffs)
else:
y_pred = A @ coeffs
# Calculate RMSE
rmse = np.sqrt(np.mean((y_values - y_pred)**2))
rmse_values[model_name] = rmse
# Update best model if current RMSE is lower
if rmse < min_rmse:
min_rmse = rmse
best_model = model_name
except np.linalg.LinAlgError:
print(f"SVD did not converge for the {model_name} model.")
continue
# Construct a new polynomial up to the degree of the best model, if it's a polynomial
indexes = ["constant", "linear", "quadratic", "cubic", "quartic"]
if best_model in ["constant", "linear", "quadratic", "cubic", "quartic"]:
degree = indexes.index(best_model)
model_terms = np.column_stack([x_values**i for i in range(degree + 1)])
coeffs, _, _, _ = np.linalg.lstsq(model_terms, y_values, rcond=None)
# Generate the function string
function_str = " + ".join(f"{coeffs[i]:.4f}*x^{i}" if i > 0 else f"{coeffs[i]:.4f}" for i in range(degree + 1))
elif best_model == "exponential":
function_str = f"{coefficients[best_model][0]:.4f} + {coefficients[best_model][1]:.4f}*e^x"
elif best_model == "logarithmic":
function_str = f"{coefficients[best_model][0]:.4f} + {coefficients[best_model][1]:.4f}*ln(x)"
# Calculate confidence measure
rmse_values_list = [value for value in rmse_values.values()]
rmse_values_list.sort()
# average_rmse = (np.sum(list(rmse_values.values())) - min_rmse) / (len(rmse_values) - 1)
ratio = rmse_values_list[1] / min_rmse if min_rmse != 0 else 0
confidence = ratio * (1 / (ratio + 1))
return best_model, confidence, function_str
def _generate_plot(self, x, x_label, y, y_label, title, directory: str, log=False) -> str:
# Function to create plots
if not os.path.exists(directory):
os.makedirs(directory) # Create the directory if it does not exist
plt.figure(figsize=(10, 5))
plt.plot(x, y, marker='o')
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title(title)
plt.grid(True)
if log: # Set y-axis to logarithmic scale
plt.yscale('log')
plt.gca().yaxis.set_major_formatter(ticker.ScalarFormatter())
filename = f"{directory}\\{title}{' log' if log else ''}.png"
plt.savefig(filename, dpi=500) # Save the figure
plt.close() # Close the plot to free up memory
print(f"\tSaving '{filename}'",)
return filename
def _generate_sensitivity_plots(self, gain_values: np.ndarray, metrics_list: list[dict], name: str, directory: str) -> list[float]:
# Finding the index for gain_value = 1
index_gain_one = np.where(gain_values == 1)[0][0]
# Prepare data for plotting
max_2std_error = [m['max_2std_error'] for m in metrics_list]
max_2std_percent_error = [m['max_2std_percent_error'] for m in metrics_list]
# Calculate ratios
max_2std_error_ratio = max_2std_error / max_2std_error[index_gain_one]
# Function to create plots
if not os.path.exists(directory):
os.makedirs(directory) # Create the directory if it does not exist
# Plotting absolute metrics
filename_1 = self._generate_plot(gain_values, "Error Gain", max_2std_percent_error, 'Max 2σ Error Percent (%)', f"Sensitivity Analysis on {name}", directory, log=False)
filename_2 = self._generate_plot(gain_values, "Error Gain", max_2std_percent_error, 'Max 2σ Error Percent (%)', f"Sensitivity Analysis on {name}", directory, log=True)
# Plotting relative metrics (ratios)
filename_3 = self._generate_plot(gain_values, "Error Gain", max_2std_error_ratio, 'Max 2σ Error Ratio', f"Sensitivity Ratio Analysis on {name}", directory, log=False)
filename_4 = self._generate_plot(gain_values, "Error Gain", max_2std_error_ratio, 'Max 2σ Error Ratio', f"Sensitivity Ratio Analysis on {name}", directory, log=True)
return [filename_1, filename_2, filename_3, filename_4]
def _generate_gain_values(self, gain_settings) -> np.ndarray:
min_gain = gain_settings[0]
max_gain = gain_settings[1]
num_points = gain_settings[2]
if min_gain < 1 < max_gain:
# Calculate the number of points for each segment
num_points_each = num_points // 2
# Generate uniformly spaced values between min_gain and 1
lower_half = np.linspace(min_gain, 1, num_points_each, endpoint=False)
# Generate uniformly spaced values between 1 and max_gain
upper_half = np.linspace(1, max_gain, num_points_each, endpoint=True)
# Combine both halves
gain_values = np.concatenate((lower_half, upper_half))
else:
# Generate uniformly spaced values as initially intended
gain_values = np.linspace(min_gain, max_gain, num_points)
# Add 1 to the list if not there
if 1 not in gain_values:
gain_values = np.sort(np.append(gain_values, 1))
return gain_values
def _run_isolated_monte_carlo(self, input_to_isolate: 'Input', num_of_tests: int) -> list[float]:
results = []
for _ in range(num_of_tests):
try:
value = self.system_input.get_reading_isolating_input(input_to_isolate)
results.append(value)
except:
continue
return results
def _run_isolated_monte_carlo_multiprocessed(self, input_to_isolate: 'Input', num_of_tests: int, num_of_processes) -> list[float]:
if num_of_processes == 1:
return self._run_isolated_monte_carlo(input_to_isolate, num_of_tests)
# Split the number of tests among the processes
tests_per_process = num_of_tests // num_of_processes
remaining_tests = num_of_tests % num_of_processes
# Create a list to store the number of tests each process will run
tasks = [tests_per_process] * num_of_processes
for i in range(remaining_tests):
tasks[i] += 1
# Create a pool of worker processes
with multiprocessing.Pool(processes=num_of_processes) as pool:
# Map the tasks to the worker processes
results = pool.starmap(self._run_isolated_monte_carlo, [(input_to_isolate, task) for task in tasks])
# Flatten the list of results
results = np.array([item for sublist in results for item in sublist])
results_without_none = np.array([item for item in results if item is not None])
return results_without_none
def perform_sensitivity_analysis(self, input_to_analyze: 'Input', gain_settings: list[float], monte_carlo_settings:dict = dict()) -> None:
self.system_input.reset_error_gain()
num_of_tests: int = monte_carlo_settings.get("num_runs", 1_000)
num_of_processes: int = monte_carlo_settings.get("num_processes", 10)
input_name = input_to_analyze.get_name()
# Perform isolated analysis where only this input has error
print(f"Isolated Sensitivity Analysis on {input_name}:")
metrics_list: list = []
gain_values = self._generate_gain_values(gain_settings)
for i in range(len(gain_values)):
gain_value = gain_values[i]
input_to_analyze.set_error_gain(gain_value)
results = self._run_isolated_monte_carlo_multiprocessed(input_to_analyze, num_of_tests, num_of_processes)
metrics = self._calculate_metrics(results)
metrics_list.append(metrics)
print(f"\tError Gain of {gain_value}")
self.pdf.add_page_memory()
self.pdf.add_header_memory(f"Isolated Sensitivity Analysis on {input_name}", level=1)
self.pdf.add_metrics_table_memory(f"Impact of {input_name} Noise Gain on System without Noise", metrics_list, gain_values)
directory = f"Output Files\\{input_name}\\Isolated"
print(f"\nPlotting Isolated Sensitivity for {input_name}:")
filenames: list = self._generate_sensitivity_plots(gain_values, metrics_list, input_name, directory)
self.pdf.add_page_memory()
self.pdf.add_header_memory(f"Isolated Sensitivity Analysis on {input_name} Plots", level=1)
for i in range(len(filenames)):
if i % 2 == 0:
self.pdf.add_centered_image_memory(filenames[i], width_ratio=1)
else:
self.pdf.add_newline_memory()
values = [metric["max_2std_percent_error"] for metric in metrics_list]
polynomial, confidence, eq_string = self._fit_to_polynomial(gain_values, values)
regression_string = f"Relationship between sensor Error Gain and Max 2σ Error Percent (%) is: {polynomial} with a confidence level of {confidence*100:.2f} %."
regression_string += f"\nThe equation of best fit is: {eq_string}."
self.pdf.add_text_memory(regression_string)
print()
# Perform non-isolated analysis where only this input has error
print(f"Non-Isolated Sensitivity Analysis on {input_name}:")
metrics_list: list = []
self.system_input.reset_error_gain()
for i in range(len(gain_values)):
gain_value = gain_values[i]
input_to_analyze.set_error_gain(gain_value)
results = self._run_system_monte_carlo_multiprocessed(num_of_tests, num_of_processes)
metrics = self._calculate_metrics(results)
metrics_list.append(metrics)
print(f"\tError Gain of {gain_value}")
self.pdf.add_page_memory()
self.pdf.add_header_memory(f"Non-Isolated Sensitivity Analysis on {input_name}", level=1)
self.pdf.add_metrics_table_memory(f"Impact of {input_name} Noise Gain on System with Noise", metrics_list, gain_values)
directory = f"Output Files\\{input_name}\\Non-Isolated"
print(f"\nPlotting Non-Isolated Sensitivity for {input_name}:")
filenames: list = self._generate_sensitivity_plots(gain_values, metrics_list, input_name, directory)
self.pdf.add_page_memory()
self.pdf.add_header_memory(f"Non-Isolated Sensitivity Analysis on {input_name} Plots", level=1)
for i in range(len(filenames)):
if i % 2 == 0:
self.pdf.add_centered_image_memory(filenames[i], width_ratio=1)
values = [metric["max_2std_percent_error"] for metric in metrics_list]
polynomial, confidence, eq_string = self._fit_to_polynomial(gain_values, values)
regression_string = f"Relationship between sensor Error Gain and Max 2σ Error Percent (%) is: {polynomial} with a confidence level of {confidence*100:.2f} %."
regression_string += f"\nThe equation of best fit is: {eq_string}."
self.pdf.add_text_memory(regression_string)
# Print the text report of the metrics
print("\n"*3)
def _plot_range_analysis(self, points, metrics_list, true_values, sensor_name, directory: str) -> str:
averages = [metrics['average'] for metrics in metrics_list]
std_devs = [metrics['std_dev'] for metrics in metrics_list]
upper_bound_1std = [avg + std for avg, std in zip(averages, std_devs)]
lower_bound_1std = [avg - std for avg, std in zip(averages, std_devs)]
upper_bound_1std = [avg + std for avg, std in zip(averages, std_devs)]
lower_bound_1std = [avg - std for avg, std in zip(averages, std_devs)]
plt.figure(figsize=(12, 6))
plt.plot(points, true_values, label='True Value', color="red", linestyle="--")
plt.plot(points, averages, label='Average', color='blue')
plt.plot(points, upper_bound_1std, label='1st Dev', color='black', linestyle='--')
plt.plot(points, lower_bound_1std, color='black', linestyle='--')
plt.xlabel(f'{sensor_name} Input Value')
plt.ylabel('System Output')
plt.title(f"Range Analysis on {sensor_name}")
plt.legend()
plt.grid(True)
# Save the figure
if not os.path.exists(directory):
os.makedirs(directory) # Create the directory if it does not exist
filename = f"{directory}\\Range Analysis on {sensor_name}.png"
plt.savefig(filename, dpi=500)
plt.close()
print(f"Range analysis plot saved to '{filename}'")
return filename
def perform_range_analysis(self, input_to_analyze: 'Input', range_settings: list[float], monte_carlo_settings:dict = dict()) -> None:
self.system_input.reset_error_gain()
num_of_tests: int = monte_carlo_settings.get("num_runs", 1_000)
num_of_processes: int = monte_carlo_settings.get("num_processes", 10)
input_name = input_to_analyze.get_name()
directory = f"Output Files\\{input_name}\\Range Analysis"
# Perform isolated analysis where only this input has error
print(f"Range Analysis on {input_name}:")
# get the original true value to return back to
original_true_value = input_to_analyze.get_true()
# Generate a uniform list using range_settings
min_val, max_val, num_points = range_settings
points = np.linspace(min_val, max_val, num_points)
metrics_list = []
true_values = []
for point in points:
print(f"\tTest Value is {point}")
# Set the input to the current point in the range
input_to_analyze.set_true(point)
true_value = self.system_input.get_true()
true_values.append(true_value)
# Run the Monte Carlo simulation for the current point
results = self._run_system_monte_carlo_multiprocessed(num_of_tests, num_of_processes)
# Calculate metrics for the current results
metrics = self._calculate_metrics(results)
metrics_list.append(metrics)
# Plot the results
filename = self._plot_range_analysis(points, metrics_list, true_values, input_name, directory)
# Reset the original true value
input_to_analyze.set_true(original_true_value)
self.pdf.add_page_memory()
self.pdf.add_header_memory(f"Range Analysis on {input_name}", level=1)
self.pdf.add_centered_image_memory(filename, width_ratio=1)
self.pdf.add_newline_memory()
print()