nanoMODBUS/examples/stm32/bsp/blackpill/blackpill.c
2024-12-15 03:17:00 +00:00

379 lines
13 KiB
C

/*
* STM32F401CCU6 Board Support Package (BSP) Summary:
*
* 1. System Clock Configuration:
* - External high-speed oscillator (HSE) enabled.
* - PLL is configured with source from HSE, PLLM = 25, PLLN = 336, PLLP = 4,
* PLLQ = 7.
* - System clock (SYSCLK) sourced from PLL output at 84 MHz.
* - AHB clock (HCLK) running at SYSCLK.
* - APB1 clock (PCLK1) running at HCLK / 2 (42 MHz).
* - APB2 clock (PCLK2) running at HCLK.
*
* 2. GPIO Configuration:
* - GPIOC Pin 13: Configured as output (Push Pull), used for LED control,
* low frequency.
* - GPIOB Pin 7: Configured as input, no pull-up/pull-down, used as input
* for interrupts.
* - GPIOB Pin 6: Configured as open-drain output, low frequency, initially
* set high.
* - GPIOA Pin 15: Configured as output (Push Pull), used for NSS in SPI1
* communication, very high frequency.
* - GPIOA Pins 9 (TX), 10 (RX): Configured as alternate function (AF7) for
* USART1 communication.
* - GPIOB Pins 3 (SCLK), 4 (MISO), 5 (MOSI): Configured as alternate
* function (AF5) for SPI1 communication.
*
* 3. SPI1 Configuration:
* - Mode: Master.
* - Data Direction: 2-line unidirectional.
* - Data Size: 8-bit.
* - Clock Polarity: Low when idle.
* - Clock Phase: First edge capture.
* - NSS (Chip Select): Software management.
* - Baud Rate Prescaler: 2.
* - First Bit: MSB.
* - TI Mode: Disabled.
* - CRC Calculation: Disabled.
* - Pins: PB3 (SCLK), PB4 (MISO), PB5 (MOSI) configured as alternate
* function.
*
* 4. USART1 Configuration:
* - Baud Rate: 115200.
* - Word Length: 8 bits.
* - Stop Bits: 1.
* - Parity: None.
* - Mode: TX/RX.
* - Hardware Flow Control: None.
* - Oversampling: 16x.
* - Pins: PA9 (TX), PA10 (RX) configured as alternate function.
*
* 5. DMA Configuration:
* - DMA2_Stream3 (SPI1_TX): Used for SPI1 TX, configured for
* memory-to-peripheral, channel 3.
* - Memory increment enabled, peripheral increment disabled, normal mode,
* low priority.
* - Linked to SPI1_TX using __HAL_LINKDMA.
* - Interrupt priority level 0, enabled.
* - DMA2_Stream0 (SPI1_RX): Used for SPI1 RX, configured for
* peripheral-to-memory, channel 3.
* - Memory increment enabled, peripheral increment disabled, normal mode,
* high priority.
* - Linked to SPI1_RX using __HAL_LINKDMA.
* - Interrupt priority level 0, enabled.
* - DMA2_Stream7 (USART1_TX): Used for USART1 TX, configured for
* memory-to-peripheral, channel 4.
* - Memory increment enabled, peripheral increment disabled, normal mode,
* low priority.
* - Linked to USART1_TX using __HAL_LINKDMA.
* - Interrupt priority level 0, enabled.
* - DMA2_Stream2 (USART1_RX): Used for USART1 RX, configured for
* peripheral-to-memory, channel 4.
* - Memory increment enabled, peripheral increment disabled, normal mode,
* high priority.
* - Linked to USART1_RX using __HAL_LINKDMA.
* - Interrupt priority level 0, enabled.
*
* 6. Peripheral Clocks:
* - GPIOC, GPIOB, GPIOA clocks enabled for GPIO configuration.
* - USART1 clock enabled for UART communication.
* - SPI1 clock enabled for SPI communication.
* - DMA2 clock enabled for DMA streams (used for SPI1 and USART1).
*
* 7. Interrupt Configuration:
* - DMA2_Stream3 (SPI1_TX), DMA2_Stream0 (SPI1_RX), DMA2_Stream7
* (USART1_TX), DMA2_Stream2 (USART1_RX).
* - All configured with priority level 0 and interrupts enabled.
*
* 8. Error Handling:
* - Error_Handler function enters an infinite loop to indicate an error
* state.
*/
#include "blackpill/blackpill.h"
#include "blackpill.h"
#include "stm32f4xx_hal.h"
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_tx;
DMA_HandleTypeDef hdma_spi1_rx;
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_tx;
DMA_HandleTypeDef hdma_usart1_rx;
void BSP_Init(void) {
// Initialize the HAL Library
HAL_Init();
// Configure the system clock
SystemClock_Config();
// Initialize all configured peripherals (GPIO and SPI1)
MX_GPIO_Init();
MX_SPI1_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
}
void SystemClock_Config(void) {
// System Clock Configuration Code
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
// Configure the main internal regulator output voltage
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
// Initialize the CPU, AHB, and APB buses clocks
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
// Enable GPIOC clock
__HAL_RCC_GPIOC_CLK_ENABLE();
// Configure GPIOC Pin 13 for LED output (Output Push Pull mode)
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
// Enable GPIOB clock
__HAL_RCC_GPIOB_CLK_ENABLE();
// Configure GPIOB Pin 7 as input for interrupt (Input mode)
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// Configure GPIOB Pin 6 as output with Open Drain mode
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
// Enable GPIOA clock
__HAL_RCC_GPIOA_CLK_ENABLE();
// Configure NSS pin (PA15) as Output Push Pull
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
static void MX_USART1_UART_Init(void) {
// USART1 initialization settings
__HAL_RCC_USART1_CLK_ENABLE();
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
// Enable USART1 interrupt
// It must higher or equal than 5
HAL_NVIC_SetPriority(USART1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
// USART1 Pin configuration: TX (PA9), RX (PA10)
GPIO_InitTypeDef GPIO_InitStruct = {0};
// Enable GPIOA clock
__HAL_RCC_GPIOA_CLK_ENABLE();
// Configure USART1 TX (PA9) and RX (PA10) pins as Alternate Function Push
// Pull
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
static void MX_SPI1_Init(void) {
__HAL_RCC_SPI1_CLK_ENABLE();
// SPI1 initialization settings
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER; // Set SPI1 as master
hspi1.Init.Direction = SPI_DIRECTION_2LINES; // Set bidirectional data mode
hspi1.Init.DataSize = SPI_DATASIZE_8BIT; // Set data frame size to 8 bits
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; // Clock polarity low when idle
hspi1.Init.CLKPhase =
SPI_PHASE_1EDGE; // First clock transition is the first data capture edge
hspi1.Init.NSS = SPI_NSS_SOFT; // Hardware chip select management
hspi1.Init.BaudRatePrescaler =
SPI_BAUDRATEPRESCALER_2; // Set baud rate prescaler to 2
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; // Data is transmitted MSB first
hspi1.Init.TIMode = SPI_TIMODE_DISABLE; // Disable TI mode
hspi1.Init.CRCCalculation =
SPI_CRCCALCULATION_DISABLE; // Disable CRC calculation
hspi1.Init.CRCPolynomial = 10; // CRC polynomial value
if (HAL_SPI_Init(&hspi1) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
// SPI1 Pin configuration: SCLK (PB3), MISO (PB4), MOSI (PB5)
GPIO_InitTypeDef GPIO_InitStruct = {0};
// Enable GPIOB clock
__HAL_RCC_GPIOB_CLK_ENABLE();
// Configure SPI1 SCLK, MISO, MOSI pins as Alternate Function Push Pull
GPIO_InitStruct.Pin = GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
static void MX_DMA_Init(void) {
// DMA controller clock enable
__HAL_RCC_DMA2_CLK_ENABLE();
// Configure DMA request hdma_spi1_tx on DMA2_Stream3
hdma_spi1_tx.Instance = DMA2_Stream3;
hdma_spi1_tx.Init.Channel = DMA_CHANNEL_3;
hdma_spi1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_spi1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_spi1_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_spi1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_spi1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_spi1_tx.Init.Mode = DMA_NORMAL;
hdma_spi1_tx.Init.Priority = DMA_PRIORITY_LOW;
hdma_spi1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_spi1_tx) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
__HAL_LINKDMA(&hspi1, hdmatx, hdma_spi1_tx);
// Configure DMA request hdma_spi1_rx on DMA2_Stream0
hdma_spi1_rx.Instance = DMA2_Stream0;
hdma_spi1_rx.Init.Channel = DMA_CHANNEL_3;
hdma_spi1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_spi1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_spi1_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_spi1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_spi1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_spi1_rx.Init.Mode = DMA_NORMAL;
hdma_spi1_rx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_spi1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_spi1_rx) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
__HAL_LINKDMA(&hspi1, hdmarx, hdma_spi1_rx);
// Configure DMA request hdma_usart1_tx on DMA2_Stream7
hdma_usart1_tx.Instance = DMA2_Stream7;
hdma_usart1_tx.Init.Channel = DMA_CHANNEL_4;
hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart1_tx.Init.Mode = DMA_NORMAL;
hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW;
hdma_usart1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_usart1_tx) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
__HAL_LINKDMA(&huart1, hdmatx, hdma_usart1_tx);
// Configure DMA request hdma_usart1_rx on DMA2_Stream2
hdma_usart1_rx.Instance = DMA2_Stream2;
hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4;
hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart1_rx.Init.Mode = DMA_NORMAL;
hdma_usart1_rx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_usart1_rx) != HAL_OK) {
// Initialization error handling
Error_Handler();
}
__HAL_LINKDMA(&huart1, hdmarx, hdma_usart1_rx);
// DMA2_Stream3 (SPI1_TX) Interrupt Configuration
HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
// DMA2_Stream0 (SPI1_RX) Interrupt Configuration
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
// DMA2_Stream7 (USART1_TX) Interrupt Configuration
HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
// DMA2_Stream2 (USART1_RX) Interrupt Configuration
HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);
}
void Error_Handler(void) {
// If an error occurs, stay in infinite loop
while (1) {
}
}
void DMA2_Stream3_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_spi1_tx); }
void DMA2_Stream0_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_spi1_rx); }
void DMA2_Stream7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_usart1_tx); }
void DMA2_Stream2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_usart1_rx); }
void USART1_IRQHandler(void) { HAL_UART_IRQHandler(&huart1); }