/* * STM32F401CCU6 Board Support Package (BSP) Summary: * * 1. System Clock Configuration: * - External high-speed oscillator (HSE) enabled. * - PLL is configured with source from HSE, PLLM = 25, PLLN = 336, PLLP = 4, * PLLQ = 7. * - System clock (SYSCLK) sourced from PLL output at 84 MHz. * - AHB clock (HCLK) running at SYSCLK. * - APB1 clock (PCLK1) running at HCLK / 2 (42 MHz). * - APB2 clock (PCLK2) running at HCLK. * * 2. GPIO Configuration: * - GPIOC Pin 13: Configured as output (Push Pull), used for LED control, * low frequency. * - GPIOB Pin 7: Configured as input, no pull-up/pull-down, used as input * for interrupts. * - GPIOB Pin 6: Configured as open-drain output, low frequency, initially * set high. * - GPIOA Pin 15: Configured as output (Push Pull), used for NSS in SPI1 * communication, very high frequency. * - GPIOA Pins 9 (TX), 10 (RX): Configured as alternate function (AF7) for * USART1 communication. * - GPIOB Pins 3 (SCLK), 4 (MISO), 5 (MOSI): Configured as alternate * function (AF5) for SPI1 communication. * * 3. SPI1 Configuration: * - Mode: Master. * - Data Direction: 2-line unidirectional. * - Data Size: 8-bit. * - Clock Polarity: Low when idle. * - Clock Phase: First edge capture. * - NSS (Chip Select): Software management. * - Baud Rate Prescaler: 2. * - First Bit: MSB. * - TI Mode: Disabled. * - CRC Calculation: Disabled. * - Pins: PB3 (SCLK), PB4 (MISO), PB5 (MOSI) configured as alternate * function. * * 4. USART1 Configuration: * - Baud Rate: 115200. * - Word Length: 8 bits. * - Stop Bits: 1. * - Parity: None. * - Mode: TX/RX. * - Hardware Flow Control: None. * - Oversampling: 16x. * - Pins: PA9 (TX), PA10 (RX) configured as alternate function. * * 5. DMA Configuration: * - DMA2_Stream3 (SPI1_TX): Used for SPI1 TX, configured for * memory-to-peripheral, channel 3. * - Memory increment enabled, peripheral increment disabled, normal mode, * low priority. * - Linked to SPI1_TX using __HAL_LINKDMA. * - Interrupt priority level 0, enabled. * - DMA2_Stream0 (SPI1_RX): Used for SPI1 RX, configured for * peripheral-to-memory, channel 3. * - Memory increment enabled, peripheral increment disabled, normal mode, * high priority. * - Linked to SPI1_RX using __HAL_LINKDMA. * - Interrupt priority level 0, enabled. * - DMA2_Stream7 (USART1_TX): Used for USART1 TX, configured for * memory-to-peripheral, channel 4. * - Memory increment enabled, peripheral increment disabled, normal mode, * low priority. * - Linked to USART1_TX using __HAL_LINKDMA. * - Interrupt priority level 0, enabled. * - DMA2_Stream2 (USART1_RX): Used for USART1 RX, configured for * peripheral-to-memory, channel 4. * - Memory increment enabled, peripheral increment disabled, normal mode, * high priority. * - Linked to USART1_RX using __HAL_LINKDMA. * - Interrupt priority level 0, enabled. * * 6. Peripheral Clocks: * - GPIOC, GPIOB, GPIOA clocks enabled for GPIO configuration. * - USART1 clock enabled for UART communication. * - SPI1 clock enabled for SPI communication. * - DMA2 clock enabled for DMA streams (used for SPI1 and USART1). * * 7. Interrupt Configuration: * - DMA2_Stream3 (SPI1_TX), DMA2_Stream0 (SPI1_RX), DMA2_Stream7 * (USART1_TX), DMA2_Stream2 (USART1_RX). * - All configured with priority level 0 and interrupts enabled. * * 8. Error Handling: * - Error_Handler function enters an infinite loop to indicate an error * state. */ #include "blackpill/blackpill.h" #include "blackpill.h" #include "stm32f4xx_hal.h" void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); static void MX_DMA_Init(void); static void MX_USART1_UART_Init(void); SPI_HandleTypeDef hspi1; DMA_HandleTypeDef hdma_spi1_tx; DMA_HandleTypeDef hdma_spi1_rx; UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_tx; DMA_HandleTypeDef hdma_usart1_rx; void BSP_Init(void) { // Initialize the HAL Library HAL_Init(); // Configure the system clock SystemClock_Config(); // Initialize all configured peripherals (GPIO and SPI1) MX_GPIO_Init(); MX_SPI1_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); } void SystemClock_Config(void) { // System Clock Configuration Code RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; // Configure the main internal regulator output voltage RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); // Initialize the CPU, AHB, and APB buses clocks RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; // Enable GPIOC clock __HAL_RCC_GPIOC_CLK_ENABLE(); // Configure GPIOC Pin 13 for LED output (Output Push Pull mode) GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); // Enable GPIOB clock __HAL_RCC_GPIOB_CLK_ENABLE(); // Configure GPIOB Pin 7 as input for interrupt (Input mode) GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // Configure GPIOB Pin 6 as output with Open Drain mode GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET); // Enable GPIOA clock __HAL_RCC_GPIOA_CLK_ENABLE(); // Configure NSS pin (PA15) as Output Push Pull GPIO_InitStruct.Pin = GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } static void MX_USART1_UART_Init(void) { // USART1 initialization settings __HAL_RCC_USART1_CLK_ENABLE(); huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { // Initialization error handling Error_Handler(); } // Enable USART1 interrupt // It must higher or equal than 5 HAL_NVIC_SetPriority(USART1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); // USART1 Pin configuration: TX (PA9), RX (PA10) GPIO_InitTypeDef GPIO_InitStruct = {0}; // Enable GPIOA clock __HAL_RCC_GPIOA_CLK_ENABLE(); // Configure USART1 TX (PA9) and RX (PA10) pins as Alternate Function Push // Pull GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF7_USART1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } static void MX_SPI1_Init(void) { __HAL_RCC_SPI1_CLK_ENABLE(); // SPI1 initialization settings hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; // Set SPI1 as master hspi1.Init.Direction = SPI_DIRECTION_2LINES; // Set bidirectional data mode hspi1.Init.DataSize = SPI_DATASIZE_8BIT; // Set data frame size to 8 bits hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; // Clock polarity low when idle hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; // First clock transition is the first data capture edge hspi1.Init.NSS = SPI_NSS_SOFT; // Hardware chip select management hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; // Set baud rate prescaler to 2 hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; // Data is transmitted MSB first hspi1.Init.TIMode = SPI_TIMODE_DISABLE; // Disable TI mode hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; // Disable CRC calculation hspi1.Init.CRCPolynomial = 10; // CRC polynomial value if (HAL_SPI_Init(&hspi1) != HAL_OK) { // Initialization error handling Error_Handler(); } // SPI1 Pin configuration: SCLK (PB3), MISO (PB4), MOSI (PB5) GPIO_InitTypeDef GPIO_InitStruct = {0}; // Enable GPIOB clock __HAL_RCC_GPIOB_CLK_ENABLE(); // Configure SPI1 SCLK, MISO, MOSI pins as Alternate Function Push Pull GPIO_InitStruct.Pin = GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } static void MX_DMA_Init(void) { // DMA controller clock enable __HAL_RCC_DMA2_CLK_ENABLE(); // Configure DMA request hdma_spi1_tx on DMA2_Stream3 hdma_spi1_tx.Instance = DMA2_Stream3; hdma_spi1_tx.Init.Channel = DMA_CHANNEL_3; hdma_spi1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_spi1_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_spi1_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_spi1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_spi1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_spi1_tx.Init.Mode = DMA_NORMAL; hdma_spi1_tx.Init.Priority = DMA_PRIORITY_LOW; hdma_spi1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_spi1_tx) != HAL_OK) { // Initialization error handling Error_Handler(); } __HAL_LINKDMA(&hspi1, hdmatx, hdma_spi1_tx); // Configure DMA request hdma_spi1_rx on DMA2_Stream0 hdma_spi1_rx.Instance = DMA2_Stream0; hdma_spi1_rx.Init.Channel = DMA_CHANNEL_3; hdma_spi1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_spi1_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_spi1_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_spi1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_spi1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_spi1_rx.Init.Mode = DMA_NORMAL; hdma_spi1_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_spi1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_spi1_rx) != HAL_OK) { // Initialization error handling Error_Handler(); } __HAL_LINKDMA(&hspi1, hdmarx, hdma_spi1_rx); // Configure DMA request hdma_usart1_tx on DMA2_Stream7 hdma_usart1_tx.Instance = DMA2_Stream7; hdma_usart1_tx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_tx.Init.Mode = DMA_NORMAL; hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW; hdma_usart1_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_usart1_tx) != HAL_OK) { // Initialization error handling Error_Handler(); } __HAL_LINKDMA(&huart1, hdmatx, hdma_usart1_tx); // Configure DMA request hdma_usart1_rx on DMA2_Stream2 hdma_usart1_rx.Instance = DMA2_Stream2; hdma_usart1_rx.Init.Channel = DMA_CHANNEL_4; hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart1_rx.Init.Mode = DMA_NORMAL; hdma_usart1_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_usart1_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_usart1_rx) != HAL_OK) { // Initialization error handling Error_Handler(); } __HAL_LINKDMA(&huart1, hdmarx, hdma_usart1_rx); // DMA2_Stream3 (SPI1_TX) Interrupt Configuration HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); // DMA2_Stream0 (SPI1_RX) Interrupt Configuration HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); // DMA2_Stream7 (USART1_TX) Interrupt Configuration HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); // DMA2_Stream2 (USART1_RX) Interrupt Configuration HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn); } void Error_Handler(void) { // If an error occurs, stay in infinite loop while (1) {} } void DMA2_Stream3_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_spi1_tx); } void DMA2_Stream0_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_spi1_rx); } void DMA2_Stream7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_usart1_tx); } void DMA2_Stream2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_usart1_rx); } void USART1_IRQHandler(void) { HAL_UART_IRQHandler(&huart1); }