{"cells":[{"cell_type":"markdown","metadata":{"id":"Ytg89BNEludG"},"source":["## BUILDING NEURAL NETWORKS FROM SCRATCH PART 1: CODING NEURONS AND LAYERS"]},{"cell_type":"markdown","metadata":{"id":"19SdgoojludI"},"source":["
\n","\n","USING LOOPS FOR BETTER AND EASIER CODING
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8InCpdk8ludM","outputId":"8b37ea71-ea02-490e-a802-4643e81615f4"},"outputs":[{"name":"stdout","output_type":"stream","text":["[4.8, 1.21, 2.385]\n"]}],"source":["inputs = [1, 2, 3, 2.5]\n","\n","##LIST OF WEIGHTS\n","weights = [[0.2, 0.8, -0.5, 1],\n"," [0.5, -0.91, 0.26, -0.5],\n"," [-0.26, -0.27, 0.17, 0.87]]\n","\n","##LIST OF BIASES\n","biases = [2, 3, 0.5]\n","\n","# Output of current layer\n","layer_outputs = []\n","\n","# For each neuron\n","for neuron_weights, neuron_bias in zip(weights, biases):\n"," # Zeroed output of given neuron\n"," neuron_output = 0\n"," # For each input and weight to the neuron\n"," for n_input, weight in zip(inputs, neuron_weights):\n"," # Multiply this input by associated weight\n"," # and add to the neuron's output variable\n"," neuron_output += n_input*weight ## W31*X1 + W32*X2 + W33*X3 + W34*X4\n"," # Add bias\n"," neuron_output += neuron_bias ## ## W31*X1 + W32*X2 + W33*X3 + W34*X4 + B3\n"," # Put neuron's result to the layer's output list\n"," layer_outputs.append(neuron_output)\n","print(layer_outputs)"]},{"cell_type":"markdown","metadata":{"id":"huHJVOjnludM"},"source":["
"]},{"cell_type":"markdown","metadata":{"id":"4gZjm_eqludN"},"source":[""]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KKwWT6aPludN","outputId":"b2de59ce-8e3a-4982-e2ab-945e69786806"},"outputs":[{"name":"stdout","output_type":"stream","text":["4.8\n"]}],"source":["import numpy as np\n","\n","inputs = [1.0, 2.0, 3.0, 2.5]\n","weights = [0.2, 0.8, -0.5, 1.0]\n","bias = 2.0\n","\n","# Convert lists to numpy arrays\n","inputs_array = np.array(inputs)\n","weights_array = np.array(weights)\n","\n","# Calculate the dot product and add the bias\n","outputs = np.dot(weights_array, inputs_array) + bias\n","\n","print(outputs)"]},{"cell_type":"markdown","metadata":{"id":"DxvV6bnqludN"},"source":["
\n","LAYER OF NEURONS USING NUMPY\n","
"]},{"cell_type":"markdown","metadata":{"id":"SXdqJAhkludN"},"source":[""]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zX8Z0xhPludN"},"outputs":[],"source":["## In plain Python, we wrote this as a list of lists. With NumPy, this will be a 2-dimensional array, which we’ll call a matrix."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aQal5RvvludN","outputId":"8de4003a-9a82-4676-c919-c813da0fb0fa"},"outputs":[{"name":"stdout","output_type":"stream","text":["[4.8 1.21 2.385]\n"]}],"source":["import numpy as np\n","\n","inputs = [1.0, 2.0, 3.0, 2.5]\n","weights = [[0.2, 0.8, -0.5, 1],\n"," [0.5, -0.91, 0.26, -0.5],\n"," [-0.26, -0.27, 0.17, 0.87]]\n","biases = [2.0, 3.0, 0.5]\n","\n","# Convert lists to numpy arrays\n","inputs_array = np.array(inputs)\n","weights_array = np.array(weights)\n","biases_array = np.array(biases)\n","\n","# Calculate the dot product and add the biases\n","layer_outputs = np.dot(weights_array, inputs_array) + biases_array\n","print(layer_outputs)"]},{"cell_type":"markdown","metadata":{"id":"pP1RSWwhludN"},"source":["
\n","LAYER OF NEURONS AND BATCH OF DATA USING NUMPY\n","
"]},{"cell_type":"markdown","metadata":{"id":"NalrSqm3ludN"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"uiYRBs22ludN"},"source":["
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8T7WK7LGludO","outputId":"e6c503ab-1b5b-4a35-8f7b-f90d23a344de"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[ 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n"," [-1.0475188e-04 1.1395361e-04 -4.7983500e-05]\n"," [-2.7414842e-04 3.1729150e-04 -8.6921798e-05]\n"," [-4.2188365e-04 5.2666257e-04 -5.5912682e-05]\n"," [-5.7707680e-04 7.1401405e-04 -8.9430439e-05]]\n"]}],"source":["import numpy as np\n","import nnfs\n","from nnfs.datasets import spiral_data\n","nnfs.init()\n","# Dense layer\n","class Layer_Dense:\n"," # Layer initialization\n"," def __init__(self, n_inputs, n_neurons):\n"," # Initialize weights and biases\n"," self.weights = 0.01 * np.random.randn(n_inputs, n_neurons)\n"," self.biases = np.zeros((1, n_neurons))\n","\n"," # Forward pass\n"," def forward(self, inputs):\n"," # Calculate output values from inputs, weights and biases\n"," self.output = np.dot(inputs, self.weights) + self.biases\n","\n","# Create dataset\n","X, y = spiral_data(samples=100, classes=3)\n","# Create Dense layer with 2 input features and 3 output values\n","dense1 = Layer_Dense(2, 3)\n","# Perform a forward pass of our training data through this layer\n","dense1.forward(X)\n","\n","\n","# Let's see output of the first few samples:\n","print(dense1.output[:5])\n",""]},{"cell_type":"markdown","metadata":{"id":"W3clSyLSludO"},"source":["
\n","ACTIVATION FUNCTION: RELU\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cuwXD_ypludP","outputId":"49568dbc-31d9-46ed-aecd-e8e6fb337a3c"},"outputs":[{"name":"stdout","output_type":"stream","text":["[0. 2. 0. 3.3 0. 1.1 2.2 0. ]\n"]}],"source":["import numpy as np\n","inputs = [0, 2, -1, 3.3, -2.7, 1.1, 2.2, -100]\n","output = np.maximum(0, inputs)\n","print(output)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Lzc6OOkXludP"},"outputs":[],"source":["# ReLU activation\n","class Activation_ReLU:\n"," # Forward pass\n"," def forward(self, inputs):\n"," # Calculate output values from input\n"," self.output = np.maximum(0, inputs)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"D-REY-BIludP","outputId":"3bf738bd-9e7f-400d-85e1-2d893c7d76e3"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[0. 0. 0.]\n"," [0. 0. 0.]\n"," [0. 0. 0.]\n"," [0. 0. 0.]\n"," [0. 0. 0.]]\n"]}],"source":["# Create dataset\n","X, y = spiral_data(samples=100, classes=3)\n","# Create Dense layer with 2 input features and 3 output values\n","dense1 = Layer_Dense(2, 3)\n","# Create ReLU activation (to be used with Dense layer):\n","activation1 = Activation_ReLU()\n","# Make a forward pass of our training data through this layer\n","dense1.forward(X)\n","# Forward pass through activation func.\n","# Takes in output from previous layer\n","activation1.forward(dense1.output)\n","# Let's see output of the first few samples:\n","print(activation1.output[:5])"]},{"cell_type":"markdown","metadata":{"id":"mhK7iYZZludP"},"source":["
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ah-gZ5CvludT","outputId":"7bf1d50b-7198-4ad2-81a0-9d5171d97b36"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[0.33333334 0.33333334 0.33333334]\n"," [0.33333364 0.3333334 0.3333329 ]\n"," [0.33333385 0.3333335 0.33333266]\n"," [0.33333433 0.3333336 0.33333206]\n"," [0.33333462 0.33333373 0.33333164]]\n"]}],"source":["# Create dataset\n","X, y = spiral_data(samples=100, classes=3)\n","# Create Dense layer with 2 input features and 3 output values\n","dense1 = Layer_Dense(2, 3)\n","# Create ReLU activation (to be used with Dense layer):\n","activation1 = Activation_ReLU()\n","# Create second Dense layer with 3 input features (as we take output\n","# of previous layer here) and 3 output values\n","dense2 = Layer_Dense(3, 3)\n","# Create Softmax activation (to be used with Dense layer):\n","activation2 = Activation_Softmax()\n","\n","# Make a forward pass of our training data through this layer\n","dense1.forward(X)\n","\n","# Make a forward pass through activation function\n","# it takes the output of first dense layer here\n","activation1.forward(dense1.output)\n","# Make a forward pass through second Dense layer\n","# it takes outputs of activation function of first layer as inputs\n","dense2.forward(activation1.output)\n","# Make a forward pass through activation function\n","# it takes the output of second dense layer here\n","activation2.forward(dense2.output)\n","# Let's see output of the first few samples:\n","print(activation2.output[:5])"]},{"cell_type":"markdown","metadata":{"id":"wcgFltXVludT"},"source":["
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EmdbYMj3ludU"},"outputs":[],"source":["# Common loss class\n","class Loss:\n"," # Calculates the data and regularization losses\n"," # given model output and ground truth values\n"," def calculate(self, output, y):\n"," # Calculate sample losses\n"," sample_losses = self.forward(output, y)\n"," # Calculate mean loss\n"," data_loss = np.mean(sample_losses)\n"," # Return loss\n"," return data_loss"]},{"cell_type":"markdown","metadata":{"id":"s6-iBSpDludU"},"source":["
\n","IMPLEMENTING THE CATEGORICAL CROSS ENTROPY CLASS\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3Tt0k-P0ludU"},"outputs":[],"source":["# Cross-entropy loss\n","class Loss_CategoricalCrossentropy(Loss):\n"," # Forward pass\n"," def forward(self, y_pred, y_true):\n"," # Number of samples in a batch\n"," samples = len(y_pred)\n"," # Clip data to prevent division by 0\n"," # Clip both sides to not drag mean towards any value\n"," y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7)\n"," # Probabilities for target values -\n"," # only if categorical labels\n"," if len(y_true.shape) == 1:\n"," correct_confidences = y_pred_clipped[\n"," range(samples),\n"," y_true\n"," ]\n"," # Mask values - only for one-hot encoded labels\n"," elif len(y_true.shape) == 2:\n"," correct_confidences = np.sum(\n"," y_pred_clipped*y_true,\n"," axis=1\n"," )\n"," # Losses\n"," negative_log_likelihoods = -np.log(correct_confidences)\n"," return negative_log_likelihoods"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NPc9GhTJludU","outputId":"79f269f3-08cc-4b3f-ed4c-0fd85b8242ab"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.38506088005216804\n"]}],"source":["softmax_outputs = np.array([[0.7, 0.1, 0.2],\n"," [0.1, 0.5, 0.4],\n"," [0.02, 0.9, 0.08]])\n","class_targets = np.array([[1, 0, 0],\n"," [0, 1, 0],\n"," [0, 1, 0]])\n","loss_function = Loss_CategoricalCrossentropy()\n","loss = loss_function.calculate(softmax_outputs, class_targets)\n","print(loss)"]},{"cell_type":"markdown","metadata":{"id":"cMKAJfBGludU"},"source":["
\n","FULL CODE UPTO THIS POINT\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ArW5N5NnludU","outputId":"42d51b1e-e3e3-4d0b-9b90-f183cc4f091f"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[0.33333334 0.33333334 0.33333334]\n"," [0.3333341 0.33333302 0.3333329 ]\n"," [0.3333341 0.33333302 0.33333296]\n"," [0.3333341 0.333333 0.33333293]\n"," [0.3333364 0.33333203 0.33333158]]\n","loss: 1.0986193\n","acc: 0.28\n"]}],"source":["# Create dataset\n","X, y = spiral_data(samples=100, classes=3)\n","# Create Dense layer with 2 input features and 3 output values\n","dense1 = Layer_Dense(2, 3)\n","# Create ReLU activation (to be used with Dense layer):\n","activation1 = Activation_ReLU()\n","# Create second Dense layer with 3 input features (as we take output\n","# of previous layer here) and 3 output values\n","dense2 = Layer_Dense(3, 3)\n","# Create Softmax activation (to be used with Dense layer):\n","activation2 = Activation_Softmax()\n","# Create loss function\n","loss_function = Loss_CategoricalCrossentropy()\n","\n","\n","# Perform a forward pass of our training data through this layer\n","dense1.forward(X)\n","# Perform a forward pass through activation function\n","# it takes the output of first dense layer here\n","activation1.forward(dense1.output)\n","\n","# Perform a forward pass through second Dense layer\n","# it takes outputs of activation function of first layer as inputs\n","dense2.forward(activation1.output)\n","# Perform a forward pass through activation function\n","# it takes the output of second dense layer here\n","activation2.forward(dense2.output)\n","# Let's see output of the first few samples:\n","print(activation2.output[:5])\n","# Perform a forward pass through activation function\n","# it takes the output of second dense layer here and returns loss\n","loss = loss_function.calculate(activation2.output, y)\n","# Print loss value\n","print('loss:', loss)\n","\n","# Calculate accuracy from output of activation2 and targets\n","# calculate values along first axis\n","predictions = np.argmax(activation2.output, axis=1)\n","if len(y.shape) == 2:\n"," y = np.argmax(y, axis=1)\n","accuracy = np.mean(predictions == y)\n","# Print accuracy\n","print('acc:', accuracy)"]},{"cell_type":"markdown","metadata":{"id":"jUTzqWfUludU"},"source":["
\n","INTRODUCING ACCURACY \n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-9kgV38tludU","outputId":"1920a77a-366f-4f12-9b31-b85e50df6d64"},"outputs":[{"name":"stdout","output_type":"stream","text":["acc: 1.0\n"]}],"source":["import numpy as np\n","# Probabilities of 3 samples\n","softmax_outputs = np.array([[0.7, 0.2, 0.1],\n"," [0.1, 0.5, 0.4],\n"," [0.02, 0.9, 0.08]])\n","# Target (ground-truth) labels for 3 samples\n","class_targets = np.array([0, 1, 1])\n","# Calculate values along second axis (axis of index 1)\n","predictions = np.argmax(softmax_outputs, axis=1)\n","# If targets are one-hot encoded - convert them\n","if len(class_targets.shape) == 2:\n"," class_targets = np.argmax(class_targets, axis=1)\n","# True evaluates to 1; False to 0\n","accuracy = np.mean(predictions == class_targets)\n","print('acc:', accuracy)"]},{"cell_type":"markdown","metadata":{"id":"ffbmCts_ludU"},"source":["
\n","THE NEED FOR OPTIMIZATION \n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DJ5M282eludV","outputId":"5f47b561-d7c7-4dec-c877-ef93e7d306b4"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADChklEQVR4nOydd5gTVRfG35nJFnrvHQQUERAERDpipVjoKiAoSLX7SVMEC4JYULEhVUVAFEUECyAiKFVAigLSe++wJbnv98clu5vdZGbSt9xfnnlgk1vOnWT3npx7ikaSUCgUCoVCoYgSerQFUCgUCoVCkbNRyohCoVAoFIqoopQRhUKhUCgUUUUpIwqFQqFQKKKKUkYUCoVCoVBEFaWMKBQKhUKhiCpKGVEoFAqFQhFVlDKiUCgUCoUiqjiiLYAdhBA4fPgw8uXLB03Toi2OQqFQKBQKG5DEhQsXULp0aei6b/tHllBGDh8+jHLlykVbDIVCoVAoFAFw4MABlC1b1ufrWUIZyZcvHwC5mPz580dZGoVCoVAoFHY4f/48ypUrl7KP+yJLKCPuo5n8+fMrZUShUCgUiiyGlYuFcmBVKBQKhUIRVZQyolAoFAqFIqooZUShUCgUCkVUUcqIQqFQKBSKqKKUEYVCoVAoFFFFKSMKhUKhUCiiilJGFAqFQqFQRBWljCgUCoVCoYgqWSLpmSJzsH8/MGMGcPAgULgw0LUrUKtWtKVSKBQKRVZHKSMKS4QAnn0WeOcdQNflRQJjxgDt2wNffAHkzRttKRUKhUKRVVHHNApLRoyQiggJuFxAcjLgdMrXfvgB6NxZvqZQKBQKRSAoZURhyqlTwPjxvpUNlwtYtAhYsyaycikUCoUi+6CUEYUpX3+dagXxhcMBfPZZZORRKBQKRfZDKSMKU44fBwzDvI0Qsp1CoVAoFIGglBGFKaVKyaMYM3RdtlMoFAqFIhCUMqIwpUMHIDbWvI3TCfTsGRl5FAqFQpH9UMqIwpSCBYFhw3y/ruvA/fcDdetGTCRFNod//QU+9hh4c0OwZUvw7bfBM2eiLZZCoQgjKs+IwpIXXpDWjzFjpH+IYch/XS6Z+OzTT6MtoSI7QBJ45hngnbelV7Tbc3r5b8DoUeAPC6Hdckt0hVQoFGFBIzN/hojz58+jQIECOHfuHPLnzx9tcXIsx48DM2cCBw4ARYoAXboAVapEWypFdoETJgBPPen9RV0H8uQB/t0OTTkoKRRZBrv7t1JGFApF1KHTCZQrCxw75ruRYQAjXoA2cmTkBFMoFEFhd/9WPiMKhSL6rF1rrogA8lxwzuzIyKNQKCKKUkYUCkX0uXDBXrvzNtspFIoshVJGFJmCCxeAceOkD4phAAUKAI8+CmzdGm3JFBHBjvORYQDVq4VfFoVCEXGUMqKIOidPAg0aAEOHArt3y0id8+eB6dOBG28EFi6MtoSKcKNVqQI0a2ae7tflAh7rFzmhFApFxFDKiCLqPPoosHOnVELS4nTKq2NH4MSJ6MimiCBvvyMz7HlTSHQdaHUrcN99ERdLoVCEH6WMKKLKvn3A/Pm+U86TQGIiMGVKZOVSRB7txhuBZb8BNWt6vhATIzXW77+H5lCpkRSK7Ij6zVZElWXLpMJhhhDA4sXA889HRCRFFNHq1wc2bATXr5cOQ/HxwK23QitSJNqiKRSKMKKUEUVUsSrC5yY5ObxyKDIXWr16QL160RZDoVBECHVMo4gqN91k3cYwgJtvDr8sCoVCoYgOShlRRJVataSiYRZEQQJ9+0ZOJoVCoVBEFqWMKKLO1KlA/vyyNlpa9KufznfeASpXjrhYCoVCoYgQShlRRJ1rrwXWrQO6dZOBE27q1QO+/RYYPDhqoikUOZb92I/X8BoGYiBexIv4F/9GWyRFNkYVylNkKs6fBw4fBvLlA8qUibY0CkXOwwUXnsWzmIAJ0K8+CMIJJzqjM6ZhGnIhV7TFVGQRwloob+LEiahYsSLi4+PRsGFDrFmzxmfbFi1aQNO0DFebNm0CmVqRzcmfX1pKlCKiUESHYRiGCZgAgnDBhWQkwwknAGAu5uIhPBRlCRXZEb+VkdmzZ+Ppp5/GyJEj8ddff6F27dq44447cPz4ca/tv/nmGxw5ciTl2rJlCwzDQKdOnYIWXqFQKBSh4ziO4y28BcK7wVxA4Bt8g43YGFnBFNkev5WRt956C3369EGvXr1Qo0YNfPTRR8idOzem+EiRWbhwYZQsWTLl+uWXX5A7d26ljESYjRuByZOBGTOA/fujLY1CociMfIWvICBM2zjgwGf4LEISKXIKfiU9S0pKwvr16zF06NCU53RdR+vWrfHnn3/aGmPy5Mno2rUr8uTJ47NNYmIiEhMTU34+f/68P2Iq0rB1K9CrF7B2bepzmiZLfEyaBBQuHJo5vvsOuHQJqFYN6NQJyJ07YzshgKNHZZRMiRJSDoVCkXk4hmMwYJgqJARxDMciKJUiJ+CXZeTkyZNwuVwoUaKEx/MlSpTA0aNHLfuvWbMGW7ZswaOPPmrabsyYMShQoEDKVa5cOX/EVFxl506gcWPgr788nyel8tC8OXDxYuDjnzkD3HWXLCXy4ovAG28ADz8MlCwpK+66SUoCxo0DypeXviClSsmK8e++65mBVQhg5Upg3jzgzz8zFs5TKBThpQRKpPiH+EKDhpIoGSGJFDmFiIb2Tp48GTfccAMaNGhg2m7o0KE4d+5cynXgwIEISZi9eOEFaa3wlnLd5ZIWjU8/DWzs5GTgzjuBX35JHc+dsv3CBamUfPWVVETatgWGDgUOHUrtv3cv8OSTQJcusu/nnwMVKwJNmgD33w/ccgtwzTVyDIVCERk6ozMMmGQgBOCEE93RPUISKXIKfikjRYsWhWEYOHbM00R37NgxlCxprilfunQJs2bNwiOPPGI5T1xcHPLnz+9xKfzjzBng668Bp/mXHHz4YWDjf/cdsGaNeW2Z556TCcsWL85o5SDl9fXXQI8eQPfuQHqdc88eoHNnmRQtO7N9u1TWunUD+ve3VzxQoQgHxVAMz+JZn6/r0NEJnVAbtSMolSIn4JcyEhsbi3r16mHJkiUpzwkhsGTJEjRq1Mi071dffYXExEQ89JAKC4sEBw5YKyKktFAEwpQp5incAWDfPuDNN6031i+/NH990CBpbcluuFzAwIEylPmNN4A5c6SlqmVLaRk6eTLaEipyIq/iVTyLZ1NyjMQgJsVa0hVdMQMzoiyhIjvi9zHN008/jUmTJmH69On4559/0L9/f1y6dAm9evUCAPTo0cPDwdXN5MmTce+996KIKgUeEewak0z8iE05cMBexV0fEd8eWCkrly8DM2fakysr8cILqZYpl0taj9wK5Nq1wN13K78ZReTRoeMNvIEDOIAxGIP+6I+RGIkd2IEv8AXiER9tERXZEL+iaQCgS5cuOHHiBF588UUcPXoUderUwY8//pji1Lp//37ouqeOs337dqxYsQI///xzaKRWWFKhgixCt2WL7w3N4QC6dg1s/BIlgG3bIrdZTpsGPPZYZOaKBGfOAG+95VsRc7mkQvLLL8Add0RWNoUCAEqjNP6H/0VbDEUOQaWDz8bMnSvDbL2haUBsLLBpE1C9uv9jT58unVQjhcMhN/C8eSM3Zzixc/8MA3jwQc/IJIVCochKhDUdvCJr0LEjMH68VDzS+nfoOpArl3RCDUQRAWQUTLVqGSvthgunE1i0KDJzRYJTp1KrEvvC5ZLtFAqFIrujlJFszjPPADt2AE8/DTRrBtx6K/D669K5NBjzf3w8sHQpUKOG/NnhkJfVBpuevn3t+62cOePf2JmZsmWtj7gcDkCl2FEoFDmBCH2vVUSTa66RScdCTZkyMs380qUyUdmlS9IKYycUNyZGpqbv0gU4fVoeKVlRoULQImca2rUDChQAzp3z3cbplNlzFQqFIrujfEYUIeWvv4B69czbaBpQty6wbp38eflymQ3WjNKlZU0dq3DirMSHHwIDBnh/Tddlyv6vvlJp8xUKRdZF+YwoosKNN0pfEqsNNO03/qZNgfbtzY943noreykigExw9t57qcdUMTHyHui6dG794guliCgU2YWN2Ihe6IWCKIhcyIW6qItP8SmSkBRt0TIFyjKiCDlffy2dZ73hcEh/ib//BvLlS30+IQEYPFge8QghN2SXSxbye/ddGVWSljNnZFKwIkVCU+wvmly8CHzzjUxAV7Ag0KGDPAJTKBTZg5mYie7oDh16Su0fHToEBFqgBRZiIXIhV5SlDA9292+ljCjCwpQpMrtoYqJUQEjpA1GrFvD997JonjeOHAHmz5cZVytVkr4VsbGpr//1FzBqFLBggVRaNE0mB3vxRcCi5JFCoVBEnB3YgRqoARe8Z4nUoWMwBuMdvBNZwSKEUkYUUefcOVkAb9s2IC5OKhYtWgR+9PDrr7I4n8vlmf3VMOSYCxaoBGEKhSJz8SSexERMNK2GnBu5cRRHkQ/5fLbJqihlRJGtSEqSxzunTnkPidV1mQL/8GGZQ0WhUCgyA9VRHTuww7LdL/gFrdE6AhJFFuXAqshWfPstcOKE79wcQgBnz8roE0V04KFD4KhR4N13gW3uBseNA6NQ7Y8uF/jdd2DbNmD1amCD+uD774PZsdqiItOTjGRb7cwsJzkBlWdEkSVYs0ZGmySb/F7HxMh2PXpETi6FhNOmAX37SK3QrTH+9BPw0khw9hxo7dpFRo5Ll4B2bYFlyzxfWLcOGD4M/G05tDp1IiKLQgEADdAAB3DAVNnQoeMG3BBBqTIfyjKiyBLYDevNbuG/WQEuWQI80lt6KKc1XQkhPZg73A9u3BgZYR7rm1ERcXPhAnBzQzA7pfJVZHoGYqCpIuKAA+3RHmWQs0PolDKiyBK0bGluFQHk6y1bRkYeRRpee9V3khi3S9pbb4ZdDB48CHz5pXmjpCSg18Nhl0WhcNMUTfEUngIAaPD03nfAgWIohnfxbjREy1QoZUSRJbj9dqBKFd+WD8OQDq5t20ZWrpwOz5yRYU4u72GLAKTFZM4chN1X/ocfUpUfMxYtAhMSwiuLQpGGN/EmPsEnqIzKKc/FIhYP4SGsxVqUgypCpZQRRZZA16UTa4ECGRUSw5AJ1L7/PnJVhBVXOX/eXrukJGvTVrBcvmyvXXIysHNneGVRKNKgQUMf9MFO7MR2bMcmbMIJnMBUTM3xxzNulDKiyDLUrCkztz79tMy8CgCFCgFPPAFs2gQov8QoULy4LOFso52WNntdOKhe3X5bf8tLKxQhQIOGaqiGWqiF/FBpKtKi8owosizutPHh4PRp4LPPZMK2XLlkwrZWrVStGG+wb19g2lR5HOMNwwCGDYc2alR45XC5gLx5pNOsGYUKAUeOhl85UigUKs+IIvsTLkXko4+AUqWkBWbqVGDiRKB1a6B2bVk5WJGOESO8n58BqcWIHn887GJohgEMH2HRSAMGP64UkUxIMpJxGqdt5+VQZC+UMqJQpGHWLFlNNylJWl6Sk1O/8P/zj0xnf/FiVEXMdGjlywMr/wDq3XT1iTTmo2bNgBUrobnP1cIty4gRQNeuvhvceiswbFhEZFHYYzu2oxd6IS/yogiKIC/yohd6YTu2R1s0RQRRxzQKxVWEAK65Btizx3cbTQM++ADo1y9ycmUluHEjsGqVNFs1awbt2mujI8d33wGjRwEbNsgnqlYFBj8OPPYYtJiYqMikyMgqrMKtuBVJSPLIxeGAA3GIw2Isxs24OYoSKoJF1aZRZFucThk58+WXwMmTQIUKQK9eQNOmwfl0rF4N3Gzxd0/TZHXgVasCn0cROeh0Ai4XtLi4aIuiSEcyklEe5XECJ7xWtDVgoBiKYT/2IwZKgcyqKJ8RRbbk6FGgbl3g/vuBb76RKS4+/xxo3hxo3x64ciXwsU+csG5DAseOBT5HVockuGwZ2KkTWKE8WKUyOHAguG1btEXziuZwKEUkkzIf83EUR70qIgDgggtHcRTzMT/CkimigVJGFFkGIYC77pK+G0Bqni23T8fChcEdn5QqZd1G14EyOTQtAEngqSeBVi2B774FDhyQZ1qTPgFq3SDr0ygUNlmJlZYWjxjEYCVWRkgiRTRRyogiy7B4MbBxo+8IUiFkOO7Bg4GNX7euTFVhdtQjBNC7d2DjZ3k+/RR492ra6rRvgrsmzSO9wXXroiObIttCZHpPAkUIUMqIIsswd651hlVNA+bNC2x8TQPGjvX9usMB1KgBdOsW2PhZGZLAuLHmmpphAO9OiJxQ6TiKo3gX72IERmAiJuIEbJy7KaLGLbjFMow3GclogiYRkkgRTZQyosgynDvnWRTWG7ou2wXKPfdIH5R8+eTPMTGpClCjRsDSpTIJWo5j1y55mfm7O53Ad99FTib3tHDiKTyFsiiLp/AUxmEcHsfjKI3SGIZhELD40Ciiwj24ByVREga8F5wyYKAkSqI92kdYMkU0UJU8FFmGypWto2WcTtkuGB54ALj3XmDOHOmf4s7AWq9ecONmaayymrpJSgqvHF54Ak/gQ3yYYs53Kx8CAmMwBgQxBmMiLpfCnBjE4Bt8g9Zo7TW0Nxax+AbfhCSSZg/24BROofTVhyLzoUJ7FVmGnTuBatXM2+TPLyNucqT1Iozw4kWgeDHArNqtrgO1akH7a4P/4//7r9T+zpyRsdoPPACteHHLfnuwB1VQxdSvwAEHDuAASqKk33Ipws+/+BdjMRYzMRNJSEIsYvEAHsDzeB7XIrg8NYuwCCMxEmuxNuW51miNV/EqGqBBsKIrbKBCexXZjqpVgSefNG/z1ltKEQkHWt68QPce5k47QgADB/k1Li9dAjt3AmpcB7w8GvhgIvDsM0DZMuDo0bD6rvQZPoNu8WdMQGAmZvollyJyXItrMRVTcQEXcBIncQEXMBVTg1ZEZmAG2qAN1mO9x/O/4lc0QRMsxdKgxleEFqWMKFI4d04mrPz3X2vfjGjx5puyzEn6PbFgQWDaNOCRR6IhVQ5h1CgZ/+xNIdF1oGVLoHt328ORBDp1kgljABmrnZwsP3xOJ/DSSHOPYgCHcMhSGTFg4BAO2ZZLER1iEYsiKIJYBF836DROoy/6gmAGnyHX1cdDeMjjaEgRXZQyosChQzKDafHiMrz1uuuAKlWADz8091eMBrNny3TsaeXSdeDsWfM07org0UqWBFatBjp08FRI8uQBnnwK+GGhfwXo/vgD+HGRueb7ysvghQs+Xy6KopahnwICRVHUvlyKLM90TEcSfPsvCQgcwREsxMIISqUwQzmw5nAOHpTpzU+c8EwdsXcvMGAAsHUr8N57waVZDxXr1wMPPZRx73L/PGqU9Cl54IHIy5ZT0EqVAr6cBR4/DmzeLJWSm26ClieP/4PNmCH7+0ocAwCXL8sInYce8vpyN3TDa3jNdBoBga4wKZ6Xg9iGbZiGaTiAAyiMwuiGbmiMxtCQCX7BQ8gGbIAO3Wd2V0D6Em3AhkwbrZOEJCzCIuzDPhREQbRDOxRCoWiLFTaUMpLDefLJjIpIWiZOBDp2lNVqo83bb0sriK8v0roOjBkj84BkBuUpO6MVLy4r4AbD8WPmigggc5ccOeLz5ZqoiQ7ogHmY5zWEV4eOnuiJSqgUnKxZnGQkox/6YQqmwAEHBAR06PgAH6A5muNbfIuCKBhtMUNGDGIsFSyCmbbmzWf4DE/jaZzESejQISAQhzgMwiC8jtfhyIZbtzqmycEcOSIThJntBw6HPBbJDFjJKgSwZUvgGVgVEaZoMessdi4XUKKEaZMZmIF7cA8A+W3XgJHyx7oruuJDfBgScbMyz+AZTMVUADIvi4BI8ZdYgRW4F/dmq0ynt+N2S38QF1y4DbdFSCL7fIbP0AM9cBInAaSGqiciEW/hLfRF32iKFzZUaG8O5uefgTvusG5XoYI8tok2DkdqPRoz/vkHiFLleoUfcPlyoEVz80bx8cDRY9Bs/N5vxEZ8js9xHMdRCqXQAz1wPa4PkbRZl6M4inIoZ7k5/47fs0220yQkoSIq4jiOez2qccCBeqiHVchc5beTkIRSKIXTOG3abiM2ojZqR0iq4FChvQpLYmxaKP3xSQwn11xjffwSHw+ULRsZeRRB0rQp0KqVPIrxxZChthQRAKiDOhiP8ZiBGRiLsUoRuco3+MbUdwKQm3N2Cn+ORSwWYiHyI3+GDK86dJRFWXyFr6IknW9+wA+WiogDDkzG5AhJFDmUMpKDqV9fBkKYYRiyUm5mYMAA89cdDhlZmjdvZORRBIemacC8b1PNcw6H1JANQzoAPT8EeOGFqMqYHTiFUz5TrrsREDiFUxGSKDLUQR1swRYMwRCURVnEIQ55kRe5kAsXcAGDMTjT5RrZgz2W75UTTuxB9gsdVMpIDiZvXqBfP/l334yBAyMjjxV9+gA33eT9i7TDARQrBrz0UsTFUgSBli8ftAU/ABs2As8+B/R+BHj5FWDffmhjxkiFRREUZVHW0jKiQ0c5lIuQRJGjNErjFbyC/uiPRCQiAQm4hEs4hVP4AT/gVtyK5/F8pvGXKYiClu+VASNbORu7UT4jOYxt22RE5eHDcvPu2BF48UVg8WLPSBWHQ+bymDEjc4XKXrgAPPWUlCv5asFPTQPuvlvmRSmX/f6eKhRBcR7nURIlcQVXTNttxmbURM0ISRU5FmIh2qCNaZuZmIluiH457hM4gdIobenfMx/z0Q7tIiRVcNjdv5UykkNISpKWBXdqB1Ju4k4n0KYN0L49MGmSdP6Mi5PVa594AqidSX2kTp0C/vxTyl+3LlC+fLQlUigyL+MxHs/hOZ+v34pbsRiLIyhR5GiFVliO5T4tDjp01EZt/IW/IiyZdwZjMCZioldrjQMOVEd1bMImy+OczIJSRhQe9O0LTJ7sPUeHYQBt2wLffhtxsRQKRQQgiEfwSEp4b3o0aPgcn+MBZCIzaAhIRjLiEGfrGOYkTqIIikRAKnOSkYwe6IFZmAUHHHDCCQMGXHChBmrgZ/yMMigTbTFto5QRRQr79wMVK1qndt+wAahTJxISKRShhadOAVOnAr8uBZwumVa4b19o6twOgMxRURqlcQZnfG7MuZEbR3AE+ZH5/8aewzlswzYYMFALtRCPeK/truAKciO3rTEP4zBKoVQoxQyKtViLyZiMvdiLQiiELuiCtmib5RKe2d2/s9aqFAExZ448kjFTRhwOYObMyCsj588D06cDn38OnD4tlaY+fYD77rMfeuwPQgB//w1cvAhUqgSUyTpfMBQ+4KJFQKeOQEJCqulv6RLg9THgBx9C69MnugJmAuZhnmXI6BVcwRf4Av3RP0JS+c8pnMIQDMFn+AyJSAQAFEABDMAAjMRIxCHOo3084lEJlSyjT4qiKIqhWNjkDoT6Vx85BRVNkwM4edI8lUPadpFk+3ZZlO+JJ4C1a4H//gN+/RXo0gVo3lwqKqGCBD7+WCogN94oU1yUKyf9ZbZtC908isjCLVuA++4FrlzxPIN0ueT1WF+prORwNmKjZepzAwY2YmNkBAqA0ziNW3ALpmJqiiICSCvJWIxFW7RFMpI9+mjQMAiDTCs7GzAwAAOynMUhu6GUkRxAmTLWmUvJyFoJkpNleoljx+TcbquNW841a4BHHgndfMOGyTDm/ftTnyOBn34CGjYENm0K3VyKCPL2W1IJ8WX2MwxgjHkhvZxALGJt+U3EIpNkOPTCaIzGLuzy6ogqILAYizEN01KeW43V6IZuGImRPtduwMD1uN7UuVcRGZTPSA7gxAmgdGnrmmQ7d8osp5Hgq6+Azp3N22gasHu3PLoJhk2bzI+fDENG5KxZE9w82QWeOSPNRTExQO3a0OLirDuFS5adO2XM9rJfpcLRrDnQvz+0q/n+mTePrOxrxdFjsrhfDmUlVtpK9b4ACyzDYKNBAhJQFEVxCZd8ttGhoyZqYhM24WN8jP7oDwOGzzDZXMiF3uiN1/BalvCTyaqodPCKFIoVA4YM8f26pslom0gpIgAwf7710ZGmAQsWBD/XRx+Z12NzueQxUU63jvD4cbB3L6BUSaBpE+DmhkCpkuALL4BJSZGXZ9Ik4LprgffeBTZulG/Qhx8A19cA338fJO0pIkBoz/yyILfgFtyIG30eRRgwUAVVcCfujLBk9liFVaaKCCCtI1uwBeuxHv3RHwR9KiK90RvHcAzv432liGQSlDKSQxg9WiY3i4mRm3xMjExyZhjA4MHAxImRlefyZe9hxmnRNOkKECx//WVtFQKkY2tOhSdOAI1uBj77TCalcXP2rDzmuP8+0M5NDJU8y5YB/R6TH5K0Z4xOp7SQPD5YVnq0U4goNhYoWTJssmYFNGiYh3kojdIZ/Cd06CiKoliABRHNXXEcx/ESXkI5lEMsYlEapTEcw3EERzzaCQjblWpjEIP38b7lOuZhXqY+ksqJKGUkh6BpwKhRwJEjUvF4/nng7beBgweBCROsK7mHmuuus05D73KFpvpuvPeovwxE8TQi+rz4onSo8eZcJASwcKEMt4oU498w/4AYBjBuLND3MfN2DgfQ7QFoqmARKqACNmETxmIsqqM68iM/qqAKRmM0NmMzrkXkSl3vxE7UQi28gldwEAeRjGQcwRGMxVjURE1swZaUtouxGDux03JMAwbuwl1YhEWWGUzP4Az+Rg7+9pEJUT4jiqiwZw9QpYpvv0NNA0qUAA4cCF5RGjcOGDrU3BLjcKSmyM9p8OJFoHgxGRrrC10H6taFtmZt+OVJSgJy57I2nQHA/gNAyxbAvn0ZzV+GAeTPD6xdB61y5XCIqggAgrge12MHdnh1RjVgoCzKYhd2wYCBwRiMj/CRpYIBAL/hN9yH+yzDmAHgD/yBRmgU0BoU9lE+I4pMTaVKwMiR3l/TdamMTJoUGotN795Arly+v0AbBtCjR85URABIzdBMEQGkYrBli3mbUJE2X4gVsbHA7yuAW2/N+FqdOsCKlUoRyWT8il/xD/7xmZ7dBRf2YR9+wA8AgMuw5xd0G25DMzRDfdS3PKaJRWxELUEKawJSRiZOnIiKFSsiPj4eDRs2xBqLMISzZ89i4MCBKFWqFOLi4lCtWjUsXLgwIIEV2YcXXwQ++CDjcf511wGLFskU9aGgaFHg++/lMUxap1m3ctKoEfDuu6GZK9okJUkLj1/+mnbPp8KRhc4b+fLJN82KAgWBwoWhlSwJbdGPwPYdwMefAB98CKxbD23tOmjXXRd2cRX+sRiLLXN6xCAmpVbOdbgOAtbK6UN4CAAwCINMK9864MADeACFUMgPqRXhxm9lZPbs2Xj66acxcuRI/PXXX6hduzbuuOMOHD9+3Gv7pKQk3Hbbbdi7dy/mzp2L7du3Y9KkSSijUl/meDQN6N9fHsX89pusjbN+PbB5M3D77aGdq2VLWQTw2WeBChWAIkVkfpEZM4AlS4A8eUI7X6Q5dAgYNAgoVEjmiylQALjtNmDpUhudr7nGutKgwwG0CZF2aIGmaUC//ubhVoYh072nMZ1pVatC69MHWr9+0OrWjYCkikBwwgkNmq12ANATPS0tHfmRHx3REQDQBm3QG729tjNgoBzKYSzG+im1IuzQTxo0aMCBAwem/OxyuVi6dGmOGTPGa/sPP/yQlStXZlJSkr9TpXDu3DkC4Llz5wIeQ5GRbdvIQYPIKlXIcuXITp3IZctIIaz7/vUXOWIE+eST5Pvvk6dPh1/erERyMvnNN/KetmxJPvww+dtv9u6tv+zaRZYoQToc7vRx8jIMUtPIqVOtxxDvvkuhwfelaxSrVpmPIQTF779TjBkjr+XLKQJcsDhzhqJ6NYoYR0ZZYhwUlStRnDwZ0NiK6DKLswgbj0mclNJnAif4bKdR4xf8wmMOF12cwAksx3Ip7XIxF/uxH4/zeEqbkzzJ8zwf0fXnNOzu334pI4mJiTQMg/PmzfN4vkePHmzfvr3XPnfddRcffPBB9unTh8WLF+f111/PV199lU6n0+c8CQkJPHfuXMp14MABpYyEmOnTSV2XG5Z783JvZk884XvTPHWKvPXW1PYxMXLDi4sj3303okvwm0uXyEOHyMuXwzvPkSPkDTekKgRp723btqGfv2nTjIpIeqVk/37zMYTLRfHoI3KzN/SMCsCAARQmv7Ni2zaKmtfLtg5DXhooalxHsWVLQOsSx49TdOrkKY+uUdx3L8WRIwGNqYg+CUxgERahRs2ncpGP+XiRFz36DeRA6tQztL+TdzKRiV7nctHFf/gPN3ETL/ACSfIiL3I0R7MES6SMcTNv5lzODfvacyJhUUYOHTpEAPzjjz88nn/uuefYoEEDr32qV6/OuLg49u7dm+vWreOsWbNYuHBhvvTSSz7nGTlyJAFkuJQyEhqmT/e9cbmvTz7J2C85maxf31OBSX99+mnk12PFhg1kx46pcsfEkA89RP7zT+jncrnIG2/0fY90nezZM3Tzbd1q/V4aBvnCC9ZjCSEoPvuMIm8eT0XErVg0aUzh5XdQ7NtHUaRwarv0fQsXotizJ+A1ikOHKL7+Wl4HDgQ8jiLz8BN/ooMOGjQ8FAvj6mMe53m0/4pf+bSM6NTZgR0oaG2FO8/zrMu6GZQa988v0MYvisIvMo0yUrVqVZYrV87DEvLmm2+yZMmSPudRlpHw8euv0pJhtnlpmjy6SW8d+eYb642veHEyiBO5kPPLL2RsbEbLgcNB5s5Nrl4d2vns3CNNs7ZU2OXTT63nA8hWrazHEkJQ1Kvr/WjErVjck9ECKgYN8t3HfazSv39oFpzN2c/9fJNvcjiH8yN+xNPMvuefq7iKd/AODwtJS7bkb/zNo52TTpZmactjnRVcYTnnIA7KoAClf6SfXxEcdpURvxxYixYtCsMwcOzYMY/njx07hpI+MhyWKlUK1apVg5HGGe26667D0aNHkeQjxXRcXBzy58/vcSmCx+kEunXzndvDDQns2iWvtEyfbp3C/fhxm06TEeDKFVn/xunMmILC6QQSE4EOHayLCNrl3Dl7xf00DZg3LzRzWiWOSzunJcuWmaerdbmA+fPB7dtTnqLLBUybap7i1ukEpk8Dk5N9t8nhJCIRfdAHFVABz+E5jMM49Ed/lEIpjMEYCOECf/oJfOYZcPBgcMoU8JJ5evTMTkM0xI/4EUdwBJuwCYdxGEuxFM3QzKPdEizBYRw2HcsBBz7Fp6ZtLuACJmOyZaTN+3jf/iIUIcMvZSQ2Nhb16tXDkiVLUp4TQmDJkiVo1Mh78pjGjRvjv//+g0iTN2DHjh0oVaoUYmNVOt5IsmABcPSo/fbpU08cPmxv4/ZnjnAyZw5w5ozvlBUul8xAa6fCvMsl82r5SlIKyJT7Z89aj6XroSuV0sS69hl0HWjRwsZgX39tndjFMDw1qQsXADub4pUrUlvzAk+eBNetA//9V9abyYE8jIcxBVNAEAICyUgGQSQiEcMwDOPeKgHcdaes0/PJx8CjjwClS4HffBNt0YOmBEqgFmqhFEoBADZgA4ZhGAZgAMZhHDbBumiUE07swi7TNluwBVdgXl/CCSd+w2/2hVeEDn9NLrNmzWJcXBynTZvGbdu2sW/fvixYsCCPHj1KkuzevTuHDBmS0n7//v3Mly8fBw0axO3bt3PBggUsXrw4X3nllZCbeRTmjBgh/SXsmPXj48nz6ZzM27Uz9xdxX4sWRWd96XnsMXPHTrf/yNChvsdITCRfe40sVSq1T5ky5NixnsdRV66Q+fPbu7cA+fnnoVvnbbf5XqemyTXa8fcUD/c0P27RQBEbQzF8eGqfpCTrPu4jnitXPOfbsYOiY0dPX5NqVSmmTcso27p1FL0epqhQgaJCeYoe3SlCfcYWJTZwg+URRK5L4Nn8XiKcDJ1i6dJoLyEknOVZ3sk7CYIOOhjDGOrUfTq6pvf5uIf3mI7/J/+0HAcEi7N4ZBacQwiLz4ib9957j+XLl2dsbCwbNGjAVWlC/po3b86e6Tz0/vjjDzZs2JBxcXGsXLmyZTRNepQyEhpGjbLenN0bWJ8+Gft/9ZV131y55MacGejXz3q9Dgc5bJj3/omJcqPXde/36O67UxWSbdvsKyL588vIHm/znTzpv8/NoUNkhQoZFUWHQz731Vf2xhGvvOLdCTX9lU5ZEN26WvuMdOrk2WfbNopCBTP20zX578iRqW3Hj08dJ+2YGij8+FKTWXmST9JBh+kGqbnAyb283FtDp2jSONpLCBpBweZsbunPYfb4kl+aznGBF5ibuU3HcNDBLuwSoVXnDMKqjEQapYyEhpUr7W2WhQt7/yadlCQjRbxtzmmvRx6J/Nq88cUX9tb744/e+7/1lrmzr6alhjPv3GlfGZk0yXOev/8mH3ww1WoVHy+Vwf/+s7/Wkyel5atIkVRFpHNncs0a+2OIgwe9h/WmvfLlpbjoGXIpNmyQFhNvfXVNKg7r1nn2adLYWvHZtIli0SJr5ejbb+0vMhPSiZ28hqx6bJJJ4OgRJvdg375oLyMoFnNxwEqIgw5ew2t8hvem5Qk+Yanw/M7fI7DinINSRhQZEEIqE2bWgvh4cu9e32McOyZzilhtuGvXhlb25GTy66/Je+6R4cX33CN/Tk723SchgSxWzLfyZBhk5coyHDc9QpAVK1pbkK65RrZ1uWTiOKv7UqeO5zxLl8r76S3aJ39+mVzOH4SQVhc/DI+e/UePNt/4fcRuix9/lIqKrqXmGdE1GSb8ww+ebbdssVYwrkbgiFtbmSst2cAy0J/9bVlGPuhncr/80TozIT3Z07ZVxH2v3O2rsir30uSPVhou8AIbsEEG5c891miODvNKcx5KGVF4ZfdusmzZjBu0rtvb/JYssd5wHQ6yb9/QyXzyJHnTTakKRNp/b7pJvu6LlStlCK+3zb5gQXLTJu/9Tp2yb+lwfyytLCmAVD7cXL5MFipkrixVquRdWQoXQgiKCRNk3pC0m12Z0hQWji7i/HmKDz+keOhBigcfoJg4kSK94xFJ8fnn1sqIBoqb6tlrp8Fr/pOswu/83XoDTgKPFYueZeQ8z/NDfshO7MT7eB9f5as8yqMhG9/tK2L20KnzWT7LQRzEu3gXu7AL53Iuk+jfueYlXuLrfJ1lWTZl7GZsxu/4XcjWo0hFKSMKn5w8Sb78Mlm+vMzBUbIkOWQIaSef1Mcf29ugmzUzH+fAAXL4cLJaNekQeuut5Ny53r/Rt2zp23HWMOTrZvz7L/noo9LqA5B58sg0+GZ5uM6eta+MuE8tnE6yWzdPZcmt+ADk6697zjFtmr3xfR0jhRORmEgxYwZF27YUhQvLY5hyZSleeoni+PHgxp49256CcXND+8pIkDJFE0HBVmxFQ3i3DGgu8OnxJpahZk0DmtdFF3/hLxzAAezBHhzN0TzAjH8EfuNvLMAC1KilOJTq1BnDGE7hlGCXT5LsxV6W1iHQ2i/EHwQFz/EcLzPMKZlzOEoZUYQFO34Yui7Tnvti2TJprUi7Ybv/f+edng6w69bZ27DTuSR4xeUiL1ywZ2kQgqxZ09zSoesZj11cLnL2bLJJE6n85M0rj5SWLcs4R58+5kdmRXGcnYy5nH3/lxT//mstdAgRf/8tlZD0RyQOg6JUSYqdOwMf+9gx6wgcQ6d4+WWK0qWsFZGiRUxT1WcFzvIsb3PdmmIFMZLkvyD42IdgksPLut1HYr/5n6TrEA+xDuukHHu4M5/q1DmKo1Kyme7kTuZiLp8+LRo1/sjgteVf+aulIpKXeXmJXjy/FZkapYwowsLJk9KaYqUc+CrOduyYtEz4OprQdfLxx1PbDxsWXERMMEyZYr3Ozz4LfHxfykhenOdkPMxEpNuwWzSn2L49dAv0gUhOluGzvnw1HIasQxNE1T/Ro4fv8XWNIncuiiNHZISPmVOtw6Cwk+s+CyAouKpvbT7xjsbu08Ghr4Lbq5ooYQULUHzn/9FCAhN4La81tURM4ASSMmOpWTudOm/hLSFZeyu2MvUbGc/xQc+jiDxKGVGEjcGDzf0cypTxXQzutdeso3Hi4+UxCSkVE6vcKDExUqZQI4SMDEp/7OL+/2OPBVeF19sxTRyu8A80ZBJ81XkpTLFrV+gW6QUxb569o5Fffw18jvPnKRo0kIqHO5zX7bgaH0dxNVmNuHCBok5t33Vvrq+Rpf1F0mPr3t95B8X06RQBVlz8gl9YWiEKszATmMBCLGTZFgQP8VDQaz/P82zP9gSlQ6k7z4iDDr7CV2zVnlFkPsKSDl6hAIDx44F77pH/dyfsdKcbL1ECWLwYyJXLe9/5831nRHWTkCAzkwPANddYZ311uWS7UKNpwKRJwJdfAg0ayEymug7cfLPM7vrhhzbTrPugc2egUCHPlO49MR0NsAYOzcuiXS7gwnlg+LCUp3jkCDhvHvjNN+DBg4ELk5bFi60zsTocsl2AaPnyAb/9Bnz0MVC7NpA3L1C8ONCvP7Dpb2h33ikb5skDLPgB6N0biItPHSA2FujZE/h9BbRsVC5Cu/deYNhw+UPa98Bdh+Hxx4GFi6D16AHN1y+ZBZ/jc+gWybdP4zSWYAnOw16q4LM4G5AsacmHfPgO32ELtmAERmAgBuItvIUjOILhGA4NQfyyKTI/EVKOgkJZRiLLsWPSafKnn8jTPup0CSGL7nXrJiNaWreWlX7TpaDIQO3a9nxAZs2S7U+dsj4Wio01j6gJFS5XcJYQb/z6q7QEuY9rNqAWk6GZfzOOcVBs307RpYunxUDXKO67l+Lw4aBkEn372svE+vzzobkJ3mQ4fJjimWfkUYR7vs6dKD6dRLFkCYWvD2Y2QfzyC0W7thT588mQ6TvvpPjhh6COxtzUYz1b1o7pnM7yLG/ZzqCRrQv6KYJDHdMo/Ob4cfKBBzz9GOLiZCRKqG59jx72ssA6HGS+fFKep54yb/vmm6GRLRzs3Sujhu68k2zfnnzvvYz3cvNm8qGH5HHTBeS2d0RSsYLvo4tKFSlOnAhYZvHxx55HJ76u2bODvDs+5t+5k6JE8Yzri3FQxMVSWIQXibNnKb79lmLmTIoNG8IiY1bmPt5nK6fHYi7mq3zVNCGbgw52YifrSRU5FqWMKPzi1CmZwMubomAYMlmaldXDDn/8Yc8yklYp0TTy4YdlAjOPaJOiMtQ4szJhgvSPcfuYaJq88ucnvQVAJCaSziJF7SkjVk6dzz4bsNziwgWZrMyXQmLoFMWKUiRaZ7z0e24hKOrV9e3cauhSNi9/C0RiIsXTT1PkivfsU69ulk8KFkrmc76lIlKGZeikk6d5mpVYyasTq0GDeZiHW7k12ktSZGKUMqLwi2efNS+Cp+sZ82QESv/+/ikk7vk3bSIXLpSROgsX+l/DJZJ8/bX5WnLnlgno0iP69zc9InG5lQ0rZaVgAQqz9LQWiG++kRu/t9De2BiKn38O4u6YzLt6tfXadI3i7bcpJk2SidEKFqAoW4aiSmXvCpShSwUl1GmBsyhOOtmETUytIzM5M6X9QR5kczYnKKNn3JaS6qzOdbQRU6/I0ShlRGGbpCSyQAFrhaB8+dDMJwQ5fjxZvLh/FpJ+/WSytFOnQiNHuBCCvPZa8/UYBvn00176/vOP3OztHJNYXXZK9ZqtY9kyihbNPZWAO+6gSFMYM9SI8eOt6+PoWmqGWKu2aZWoWxqFTe6sxAVe4HzOZyM28ohcAcF8zMepnOq132Zu5gRO4Jt8k7/xNxXdorCF3f1bI8loOc/a5fz58yhQoADOnTuH/NnIcz6zcPAgUK6cvbZXrgDx8dbt7JCcDKxdC6xYATz/vHV7TZNbOQA0aQIMHQrcfXdoZAklX3wBPPSQdbsSJYCjRzM+zwUL4OrQEUx2wgEZVZNMB2I0J17hcAzVxsCARUgSAJw9F5JIEx4+DJw4AZQoAa1kyaDHM51r/Hhg6BDrEKq0HwZ/aN8eqFQZeOABaPXrByZkFiURiRiO4fgIH+ESLqU8fx2uw224DTfhJnRAB+RG7ihKqchu2N2/lTKiwKlTQNGi1u10HUhKSo0yDBU//wzccYd/fQxD7lcTJshox8zCgQNA1apAYqJ121y5gMuXMz4vBHBLxcO44+Ak3MEfEYdErEUDfIj++Bu1MR9tcQd+Qozm9D6wYQBNmkD7dVlQa4kGXLkSaNokfBO447OdTvmhmz0nW4UG+8IJJ+7G3ViCJRDpFFkDBoqiKNZiLcrB5rcSRUBcwiXMwiysxmro0NEczXE/7kcc4qItWtiwvX9HwEoTNOqYJvw0aGCejMwwzFO8B8ORI+b+KmaXppH//BMeubxx5Qo5fTp5220yTLl9e/Lbb1Nr6gwdan8t113nfY5ly8z7NcVvdGqa9B/xdS1c6HMNYvt2isGDpZ9F4UIUTZrIyJOrPibC5ZLp4FetCioqJxCEEDK7qx2/mGAvh0Fxx+0hCZfN7MzgDFOHVQcdfJAPRlvMbM1CLmR+5k+5326n4GIsxj/5Z7TFCxvKZ0ThF2YOl+4riISblnTubC/k15svyRNPhE+utOzfT1atmuqE6lbSALJxYxmye8019mWfMMH7PHbS0PfGp0zW0jmYxjikP4WvgUmK776TPilpnWTdfhe33y4r9lYo77lhd+lM4c3bNkyILVukkpTekddhhMaXJv0VRh+YzEJDNjQN0XVvkKeYyR2ysihruIYOOqhR8xmVtJOB13vKzChlROE3r7ySusGn3ew1jZw4MbxzHzpEli0bmEJSt254ZSNlwrOaNX3LZxiyIF7p0vZkLl9eFu3zhh3FUNfJXk12UDz1FEWdOhS1a0lrx7ZtPtcg9u6VeTr83dAdhnQYDaI4nr+I3bsp+vRJDdM1dIr27WQa9FAqIjEOinDUEogC53iOEzmRbdiGt/JWPs2nuZ2yllFe5rUM5wXBtVQRR+GgHduZRi856OAADoi2mGFBKSOKgFi7Vub0qFJFfsvv14/8++/IzH3kCNm3r8xI6q91xCIPVtAsWmRPloYN7R3TmOXiOn9ehv5ajTHFz+rtYsiQwI8/HAbF7bcHdQ8DQSQkyGysaZLciPr1Q3eM4zAoHugW8XWFmj/5JwuxELWrD/cGB4KjOIpFWdSWMrKZm6O6jrVcy8f4GG/lrezIjpzFWUxk6PPZRJKzPGtplQLBPMyTLSOUlDKiyLJcuEBu3UquWCGtMnYVkgAqqdvmscesrTa6LjOpmrUxDNLOnj58uO+1GwZZrhx5yc9q6qLm9cFt3LoW0eMan+v4+2+ZJj0UCkmMI6gEcZmBgzzIfMxnuuE1ZVPT6rsgWI7l6KIrKmtIZjJ7sqeHEuVeTxVW4R7uiYpcoWAP99hSBEFkecXLG6pQniLLkjcvUKMG0Lgx0KGDZyE5X7hcwJAh4ZPp4kWpCphhGEClSjJIw5vMhiEjaN56y3q+UaNkbTggtV6ae8wyZYAlS4Dc/kZgJib52SEdJPD332BSEjhnDtizB9i5EzhyJLh/f3Bj+4F2ww3AqtVAmzbBVSoEZFTNww+HRK5o8RE+wmVczhAl40aDhl3YBcL8A/w//M+ygF64GIZhmIEZAGTkD4CU9ezGblRGZcQiFjfiRkzGZCQjOSpyBkJRFIUDFoUnARREQcQiNgISZVIipBwFhbKM5FxOnJD+FXaPbHbsCI8co0bZO3754gsZcfP44xmPmxo1kllk/WHdOmmVadVK+qR8/jmZkBDYGkS3rtYF8Kyujz9OdXB1O5Q6DOnTMWZMYIIFgThyhOLPPylmzaIoXizV2pFWNjNLT48eEZc51FRhFVvful/n63TQ4eG74LZC9Gf/qB0RnOEZxjPe1hrc1pLWbM0EBviLEAW6sIupz4hBg8/wmWiLGRZU0jNFtuHhh4Hp0+21XbIEaNUq9DIcOABUrChzgKTFgBMuGAA0FCggk5i5k8KdOwf89huQkADUrCmtPdGEy5cDLZoHPkB8PJA/v0xM4ysp2aRPoT3ySOBzBAETE4GvvwYWLwZcTuDGukCPHsCHHwKvvCyT5DgcqbL37QtMeBdaTExA813ABezCLsQiFtVRHQZCnIDHJsVQDCdx0rLdMixDGZTBh/gQC7AASUhCfdTHAAxAczSHhiCtTAHyJb7EA3jArz46dDyH5/A6Xg+TVKFlK7aiPuojCUlwwfN3x4CBAiiATdiEsigbJQnDh8ozko04d4786Sfy++/JffuiLU3kufNO+5aRjRvDJ8eoUXKOAjjDERjNgyhFoYFXEMvP8AAXvPxX+CYPAUIIigH9vVsJ3OG9ZsXxmjaxjsQpX47CnXQlEyFOn6b46COKESNkXZuDBwMe6ziPsy/7enybL8MyfItvRcXnwk7YLgju5d6QzXmUR/kzf+YSLuF5ng9qrA/5oW2firSPfMzH9/k+u7IrO7ETx3EcTzCyeXH84Q/+wbIsSxCMYUyKVaoaq2XrYoPKgTUbcOUK+eSTZK5cqZutppF33+29yFp25cEHzROyua8SJWRdmHAhBDnplaP8z7iGSfCsieI0HPJ44JtvwidACBBCULzzDkWZ0p4RJR06yCMYXzlIWrWkuLGOvaOcP/6I9jLDxjEeYyVW8mly78meET/umMqpppu2QYO38taQzHWYh9mZnT3Wn5u5+QSf4GVeDmjMH/ljQMpI2vW5C/jFMpaf8/OQrDUcOOnkfM7ncA7nC3yBi7k4W0bQpEUpI1mcpCSydWvvm7BhkEWLkntD90UnU7NggT2ryKefhl8W0a4tXb78EHRN5vE4coROp4zu+eorGRXkik6Qgk+E00nx118UK1dSHD2a+vw//1AMHEhRsoSshtuwgcztkZTkmQzN7PrhhyiuLLz0Yi/LqJT5nB9RmRKYwAZs4FVBMmgwnvFcz/VBz3OUR1mO5byuX6fOZmwWkB+Hk06WZumgFJK0D40aF3Nx0OtVhAaljGRxpk+3DmXt2jW6MrpcMv/GwIFk796yEm84soc7nTKxmZkDaSRSYIjdu62PKQyd6zu8wjJlPOWrUIGcPTv8MoYT0byZvSq5kUpMEwZEcjLFiRMUV65keO0MzzCWsZbf0m/jbQHPf4InOJqjWZ7lGc94lmEZDudwHuZh037neI5d2CXDcc11vI6rGJoMs4/xMVMnTI0aP+JHAY09l3O9ZicN1FLSgi1CsmZF8ChlxIITJ8jPPiM/+ohcujTzfXO1qhXjVkhOnoyOfLt3y9oqbjkcDilvTAz5/vuhn+/4cXlP3JYhTUvNw9G7d2TePzvZP10a+Ata+XzPJk8Ov5zhQnz2maUiJm6sE20xA0Ls308xaBBFntypa7n/foo1a1La/Mk/bW2GhVgoIBn+438sxVIZFAqDBouwiK2EZAd4gFM5lR/xI67gCr+OABKZyC/5Je/knazFWryTd6YkHbvIi5YRLxo11mRNjzH/4l8cyqEcwAF8g2/wKI/6mJ38il+xJEumjBWsUnKMx2yvXRE+lDLigytXZFbR9AmsKlUif/45BMKGiHz57B1NpPlbGTHOn5fhtmZJwGbODP28QkjFsV8/sls3WZQuXKG8XuefMsXWMcVSNPd5X3LnlvcvKyISEynq3+Q9XFbX5Aa+OOuZx8X27RRFi2QMe4656gf07bckyXVcZ2sTLM7i/stAwZqs6fMIyKDB8izPZCb7NeZZnrXly3GMx3gDbyCYGj7r/rc2a/N3/m5r7TGMISmzjt7O2wnK8OEYxlCnTgcdHMVRPpWkZCbzB/7A9/geb+WtQSkm7lT4iuiilBEvuFxkmzbeLQ66Lr9xL1kSIqGDpHhxe8rI5ihkb37/fevMqJUqZT5rU7CIrVstFZEkzeCrGOrzvmgaOWmSyRwuF8XChbI4XZMmFJ06yuJ2mSRCRZw5I2vEuK0H7g28VElLXxHhdFLs2iWvZPubajgRQlDUvdF3PhJdo8idi+LUKSYykYVZ2HQDdNDBh/mw33L8yl9tbbDf8lvLsS7wAkdzdIqVAQSbszl/oPf3R1CwMRv7VIQcdLA+69uSLw/z0EUXm7Kp6ZHOG3zD+r2h4If8kJVZOaVfLuZiHuaxlMNBB8/yrN/vQ05jB3fwCT7BSqzE0izNu3k3F3BBSJ1qlTLiBav6IrpO1qgR3ogMu3iz3qS/ypePzoZfv769NO2rV0detnAjmjU1TaSVrOmsgD0+70lMDPmMj9xG4uxZGT7rjnBJ+2/9myiidSbnBbFzp4zKef11ivnzTZULkZREMWYMRelSqfeqRHGKUaMoAs3gFiLE6tXW1i5do3jrLZLkKI4y/aauUQvIWXQ4h1s6xjro4CAOMh3nLM+yNmt7PeoBwbEcm6HPKq6ypWiUZ3nTtTvoYDd248/82XKsfMzHS7RXz0BQ8D/+x63cyou8yJf4kmXRuS7s4vd7kNOYy7l0XH2k/5w8yAfpZGi+ACllxAv33WevKuzaTFC4cuvW1Iq5vuQMh2+GHexmRF2wwHqsnTvJ554jb7tN+oTUrk1WrkzWqUOOHi2L52UmxH//URQrmtGkf9Wxs7/+oaWfz4sv+hi7zd2+FR2HQdG8eUTXGgpEUhLFXXd5d3w1dIqWLaKqkIi33rJ2ytU1ig73kySTmMR7eA9BeGz47vLwH/PjgOT4H//HGMZYKiOP8THTcfqwj+lGDWaszPs8n7elCN3Nu03baNS4hmvYnd0tZQDB2QzMo/skT/qM6jFoMA/zcBt9V69WkP/y35TPrK/38jW+FpK5VG0aL+zcKUtRWLF7d/hlsaJGDWD2bJkw0kiT2NFdp2TQIGDAgOjIVq6cvXoxpUubv/7660C1asCbbwK//AKsWQNs2iTv/8aNwEsvAddcAyxfHgqpM3LkCPDGG8ATT8haMNu3W/fRqlQB1v8F9OqdmmoVABo3xuaxi/Ch6Gfa3+kE7rkn4/PcsgVYuNB3ZlOXC1j+G7h2rbWQmYlPPgF++jFj6lpAPrd8OTBhQuTlcmOnto2mpbSLQQy+xtf4Al+gIRoiN3KjAAqgC7pgFVahL/oGJEZd1LWst+KCC3VR1+frZ3EWMzAjQ4bPtDjgwERM9HjuEi5ZZl/VoKEKquAZPJMyTtoxdeiYgimoj/o4giOmMrjHO4Zjpm18UQRFsAIrUB/1AchsrO7st5VRGb/hN1yH6wIaO6fg/gwQ9Po6QbyFtyJbAygkqk+YCZVlpEkTe8cLixaFSPAQsHs3+b//yeOjqlVlOO/y5dGVafJk8/unadbHXTNm2LOu6DqZNy951LcTvt+4XNL51TBSI4DcYcOdO9uvhisuX6bYsyfl+EQIGYLsy/pmGKQv44Z46SXrujExDornngvNTQgQcekSxaFDFJetnSKFEBTVq1mHQ5crS2HzvFFs3iytGePGUSxeTBHkmapYs8beMc3bbwc1jxWJTGRRFjX9ppqHeXiBF3yOsZRLLa0RIFiBFTz6TeAESydRjRrfpzTFLudydmVXVmAFVmEVDuRAD0tEd3a3tLSA4BzOCfq+/cW/+Cbf5FiO5VIujXoCsY3cyMEczLt5N7uxG7/hN345HUeK8ixv67OymsGftatjGi/YcbwsUEBG3Ch8c/kyef313jddd8it2RGNEOQ119hTDN0Kyauvhk7+F14wn+uee3z3TUoi58whH3mE7NGDfPtt8tSp1NcPHSKrV08dK+2/tWrJEGWv9+Tpp2X2U7NNMTaGol+/0N0IPxAbN1J07pR6jBQbQ9H9IYptvs3h4tIlW9FHQgPFMfMwTHHoEEWL5qnHO245rqlCsSq4PBqiXl3fiqDbgfX06aDmsMNP/ClDITv30YNOnXM517S/XWWkPMt79DvFU5b5U+IYxzM8Y2sdv/AXSxnyM79tn5GsgJNO9mEfgqnFB93vY3VW5z5mrjoexVnc1mflN/4W9FxKGfE6jkwZbpY8K5SbXnbm2DH5Ld/9jT8mJlWZs0rutXmzPSUk7VW3bmjkPnWKjI0NzG9o40amJDNzOFLzncTFySR1bq5cIadNI1u0IK+9lrz1VlnN18w1QkycaCuhmhg3LjQ3wg/E4sUU8XHeQ1/z5PapDIgrV+wrIybOueLsWYoqlb0rDA5DKgv+lkNOO/6OHbLir6/Q3vmRy6j6J//kbbzNY0Noxmb8lb9a9j3DM4xjnOnm4qCD3dk9Q993+a5pP7dVxA4uuticzU39Rt7iW/7clkzPMA7zaV1y0MGqrMpEJkZbzBRas7WlX49BwzQvjF2UMuKDLVvIUqU8v7G6v+H375/9wlHDzYYN0tF02DBZ3t6OVWnFCv+VkerVQyPvxx9bW2QcDvLxxz37HT5MFirkW5HVNHLhwsDlEqdPyw3f6pgmlOdVduS6coWicGHfTp4OQx6z+Ag9Fg0bmjuI6hrF9TVMj1vE2LHmYzgMinvaB7fOgwcpnniCIl/e1DE7d6JYty6ocQPlCI9wAzfwIP0r6PcoH7XcZHyZ3qdwikc4MAiWYilO4zS/ZJjP+WzIhh7juGvHOOjgq3w16scpoeQsz1omhAPBWZwVbVFT+IbfWCqtHdghJHMpZcSES5fIKVPIdu3Ili2lErJhQ0iGVtjgwAH/FBGHg+zYMTRzjx5tHVGl69J3JC3Dh5tb1HRdhjwHg3j7bXNl5JVXgpsgEJlsZJ0VGnxaD8SsWdZ9LYoKiSqV7fl1+DoD82e9TqdUDBMzz7dYfzjDM6zJml6PekBYRkgkM5mLuZhf8Asu4ZIM4Z3neZ4/8Ad+w2+8JhUby7Epykfa+TVqLMqi/If/hHS9mYEv+aWlIqJT5728N9qipuCiix3Ywas1x6DBYizGPdwTkrmUMqLI1Nx+u/nmnv4KVWJPu5aRwYM9+5UrZ0/OYKspiw8/pChS2HOjLVhA5vSIQgIc0a+fPV+WIUO89xeC4vHBqdaGtEdOGigefcRyXZYWI/e1cWM4bkGW4zzPcyRHshiLpWwwTdiE3/G7gMdMYAL7sV+GY6BmbMYt3EJSOpNafdt+gA+EapmZhg/5oaUyAsrEc5FCUHAd1/En/pTy/qQnmckcyZEsyIIZlKZQKSKkUkYUmZwNG8hcuawVEk0jH3ggdInoTp4MzGckb157ykgo0vOLhASZSOzjjynmzfNatC1SiP797UX5DB3qewwh5DpaNJdtHQZFk8YUs2fbUrBEieL2lJF9mctJMNq46OJJnjSNwLHDCq5gURb1usEaNJiP+biN29ibvW3lK4lEzRhx9REJFnGRpSLioIO92Csi8nzJL1mFVTzmr83a/Jne650kMIEruIJLuMSyIGMgKGUkk3P8ODl1Kvnee9LXIJNk+44oq1ZJB09fG3v+/DJBWKjvzfDh5sct7dpl7FO1qj1l5KB/R/yZHjFzpj1FwGY8vBDC2hJy8aJMO3+1nXj6adOst8LQKRo0CHqt/iCSkihWrqT4+WeKYM1hISKJSVzFVfyVv/rta+KLn/mzLUfHO3knq7KqLQvBIoYvd8L3/J6t2ZoxjKGDDjZiI87kTLoYPmfAZCZn8LXx9ljBFWGTwc37fJ9gxno+bp8dO+UEQo1SRjIpCQnSR8Xtt+A+Mihdmpw3L9rSRR4hpEPrxImyZsuSJeR338mihTZSWQSEyyVzt7jrEcXEpL4fHTp4zzMydqx5FWXDIFu3Do+80UQkJMhIEzMH1sqVbOcJMZ3rm28obrkldeyyZShee41i2zbpWGrmxGpRF8cvOdaupXikN0WtGyhuqkfx4osUV7VMIQTF+PEZrTW3tgoqoicYXHTxDb7hEa6pUWMbtgmqWJw794kdBUOjxkqsFFVl5Hk+n6Icpd2EQbA7u4dVIZnN2T7Xq1NnB3YIu6XmGI+ZZvHVqLEwC0c8qkcpI5kQIWRKem+bmjs/x3eBH+sq/OTgQfL118mBA6UFxiRlBs+cIStW9O786k6cFmS6i0yLWLlShvB6C30tWDAkvhrixRc9fUnSWT3E4sWpvjSGnlolODbG0gHWtgxCUAwZkrq2tApXfJw8Ohs4wLdSlic3RYQ94QVFSn4LbxaLAiwQsNOo2Qbr7dGWbS2PaWIYw5MMfY2leZxnKd8H/CDk86blS36Z4qfjVoIcdHAAB0REARjLsRkch709Ak3DHyhKGcmE/PqrtX9EhQoqvDizsn8/2bBhqiXEnVulZMnQOdhmVsT27RR9HqXIFS8337x5KAYNotizJ/ixly0zPwJyGBRPPSWTqH36KUW3rrKa8WuvhTTUWUyaZB6tY3ZU5Jbz5ptDJo8dlnGZ6cZj0OCtvDWgse3Uy0n7+IyfmWZyNWgEVNHYDs3YzPQ4SaPGa3hN2K0TSUzid/yOb/NtTuZkHmfwEV526cEelkdqMYzhi/RRHCtM2N2/NZKMXPL5wDh//jwKFCiAc+fOIX/+/NEWJ2AeekjWm7Gqj7N0KdCyZWRkUvjP2rWylk5yMlCnDtCmTWrNoOwOhQAuXwZy54Zmp0CRnTE7dgTmf2f+i5E3L3DkKLQ8eUIyZwYZSKDqNcCePfK7gTfcdWys/mT+vRlazZqhFdAHXdEVX+NrOGH+R+U//IcqqOLX2CMwAmMx1nJsACiO4jiIg/gYH2MwBsOA4VGfRoeO63E9lmM5CqKgX3JY4YILMYgBYb2VbcM2VEd16Mh+Zdkew2OYgimm75cBAy/jZQzF0IjJZXf/zn7vSCbmv//sFerbuzfsoiiCoH59YNgwYORIWfQupygiAICTJ2Vlw8qVwDy5wYoVwNGjwRMnAh9z+W/WvxgXLwJbtwY+hxX//isrNJopGm4jphXhlDMdG7DBlrKwFf7L1BqtbY0NAM/iWcQgBoMwCIuxGLfhtpTie6VRGqMxGiuxMuSKCICUr/12qIEaKIMyeBkv4yIuhlyWaNIGbSzfLxdcaIM2EZLIP5QyEkEKFrTXrkCBsIqhUAQEt28Hat0AvPIysH8/cOWK/Hf0KKDWDeCOHQEObNM4G04j7qVLoRsrbTXnMBMPe3PFIc7vsZujOa7H9R4Ver3xCB5JqeYLALfiVizCIiQiERdxEQdxEMMxHPmQz/bcl3EZe7EXZ3DGsq0DDtyAGywrD7s5iqN4CS+hCZrgHM7Zlimz0wZtUAVVUioYp8cBB1qiJWqhVoQls4dSRiJIbKx1mzx5gNtvD78skeLYMWDePGDuXGXxySpw3z5w82bwTOpGQCGA9u2A06cBV7ry8EJIi8k97WU7f2nWzNq8lCcPEM6jj0qVAMP7H/EUNBubXXw80KJFSESywz24x+fm4yYP8qAxGvs9tgYN3+JbFEVRr8casYjFFEzBJEzy+noMYpAHeWwrCQCwG7vRC71QCIVQCZVQGIVxG27DMiwz7fc4HrdtHQEAAYEt2IIhGGK7T2bHgIFFWIQSKAHt6gNAyntTHdUxC7OiKaI5kXBgCZas5MAqhCzGdvas5/PHj1unIQfIAQOiI3eoOXOGfOghzzVrGnn33dIRVJH5EF9/TXFjHc9omW5dKXbupFi0yF6+kZ9+8n/eX3+1TvXe+BaKv/4K/aLTytGls7WTanyc7xBjQ6dIX9QozBzgAcYz3qfjqE6dz/LZoOY4zuN8iS+xHMsxlrEszdIcxmE8xEN00cWlXMqP+TE/5+dBRcps4RYWZMEMETkGDWrU+AW/8NnXSSfv4T2mDrTeHvGM51me9TluVuQMz/Btvs06rMMyLMOGbMhP+SkvM0y5EixQ0TQRJjGRHD+eLF8+dfOtVUtWbxVCJjczy1Ph3qyffz7aKwmeCxfk2r1lVzUMWajw0KHU9gkJspLv5s3mlW0V4SOlLk76jdZhUBQqSNGzp3Va+BgHxXPPBTb/iBGp8/mKVNFA0aQJRdoPTwgRu3bJooBpZNhYC5zeHfyyq8ajbevLEOO8eTzldP//zjspovABXsRFjGOcRySF+/9t2CZsYaU/8SdWZMUM0RoDOdDvOQUFb+ANptEgMYwxzd6azGSO4ziWYRm/FJLf+Fuwt0JhglJGIkhCAtmqVUZlw/3zY4+RQ4akhoL6uhwOsmfPaK8meMaNM1e8HA6yXz+Z1GzYMLJgwdTXChYkhw4NX8IzRUbEf/9J64NZyGqRItZWg9gYiiefDFyOuXMpbmlkrfBUvYbi/PkQ3oFUNu2Zz2dmlePdC8AShz03LYeQoannD22neOEFimurU5QtS3Fbayl7FNMo7+ZuPsfnWImVWJIl2Yqt+BW/ylDoLlT8wl9SLBberDH38l6/wmj/5J+WSoNOnWM4xnIsJ53cxV22sqIqZST8KGUkgrz8srXVo2dP6zYOB/lscBbVTEHFitbHUblykY0aeb8nuk42aUJGsSRLwIjLl+Xmfjj0NR7ChXjuOWtFw+41fXrw8jRpbJ5tVdco3nknBCtPJZGJfIAPpFoVBOSV7mHQ4C28JeJZLDMTgoLVWd0ywdYSLrE95jt8x3I8jZpflW8f4AOWSdiy4zFNZsPu/h2QA+vEiRNRsWJFxMfHo2HDhlizZo3PttOmTYOmaR5XfAS9zcON0wm895704fOFYQD//GNvrAcfDJ1s0cDlsueoeuUKsGqV9/smBPDHH/K+ZhV45Ag4YABQtIjMV1GmNHhTPXDu3GiLZs2a1RmdUv1F02S4WKdOQQ3DffuAlSvNf6EAYNKkoOZJz0AMTHHuc8EFaIA3v0sXXPgDf2AmZoZ0/mBx766RYDVWYzu2Q8D3e+SAA5/gE9tj2s374U9+kMEYbJlz42E8jAJQ4YuZAb+VkdmzZ+Ppp5/GyJEj8ddff6F27dq44447cPz4cZ998ufPjyNHjqRc+/btC0rozMS+fYDJ0gHIv/N//QX06+fbId8wZM6KOnVCLmJE0XUgzmYUoVmkphDAyy8DHToA3bsDX30lk4xlRnjgAFD/JuDTSVLLcrNxI9C5E/j661GTzRYxMcH1Nwz5xk+fAS1XLtOm3L8ffOcd8KWXwGnTwIvpcj0cOmQ9HwkcOhiEwJ7sx35MxmTTzTUtOnR8gA9CNn+gCAh8js/RAA0QgxjEIQ534k78iB9xHMfxNb7GLMzCDgQYcu2DXdhl2cYJp1/zNkdzW/e/OZrbHvNm3IxX8SoAZIg40qGjJmpiLMbaHk8RZvw1uTRo0IADBw5M+dnlcrF06dIcM8b7Wd7UqVNZoEABf6fxIDMf0+zaZa+aa0yMdHJ99NHUIxn3BZD33uu9QFtWpGtX88ghq+Oq9E69bkfYihXJ7YHX/Qobom0b62OOKBVRs4MYO9b8WMTqatmCYvly8zmuXKF4uKdnTRldk/Vc3nsvtd2//9qbs0rlkK3/Db5hq6ZH2kchFgrZ/IHgpJOd2TnFlyLFr8IlfTh04bmelmzJndwZkrnnc77l/dGosQVb+DVuEzbxeayiU2ce5gnoSGU+57Mpm6aMVYIlOJqjeYEX/B5L4T9h8RlJTEykYRicl668bI8ePdi+fXuvfaZOnUrDMFi+fHmWLVuW7du355YtW0znSUhI4Llz51KuAwcOZFplJDmZLFHCfEM1DLJ589Q+O3aQI0aQvXrJ6rEhqDNmmz/+ILt1I8uUIcuWJR98MPQF3tas8U/hsHsZhpQ7M30MxN695s6fbqfLxx6Ltqg+ESdOSKXAah3ersLWm7IQguK+e80Vng8+SG1bu5a5LIZOMWpUyNY/hEP8qsECgmVZNmTzB8JbfMuvMFaDBouwCPdwT9BzX+Il5mVeS2XkI37k17j7uI9lWTZDRI2DDsYylj/yx6DlPs3TYa3eq8hIWJSRQ4cOEQD/+OMPj+efe+45NmjQwGufP/74g9OnT+eGDRu4bNkytm3blvnz5+eBAwd8zjNy5EgCyHBlRmWEJF95xXrz/eabaEtJjh6dapVJ6zQLkD4MWwEzc6YcO214r3uusWPJ+vUDU1g0jXz//dDKGgzi66/tbdo31Iy2qKaIH3+UOTTSV+a1uiqUtx77jz+sxylYgOJqCJX47jvf7RwGRdEiIS2Q9z7f98syYtAIOndHMLjoYjmW80t5cm/qD/LBkMgwkiN9KkMGDZZiqYAsD8d5nCM4IqX6bTzj+TAf5mZuDoncisiTaZSR9CQlJbFKlSocMWKEzzZZyTJCyuOX226TG6WmZTyOGDhQ5hqJJvPmWW/0CxaEds49e2TelLp1Zd6R/v3JtWvJt9+2tiaZKSONGoVWzmAQ335rb9OuUyfaoloi/vmHon9/mVckNsZelVob4V+ib197Ss6cOal9Pv1UymDoch53/7JlKP7+O6TrPsETti0jOnXmYi7u5u6QyuAPu7nbb0UkrUJyhmeClsFFF/uwT8qY7nsDgqVZmtu4zbT/GZ7hQi7kfM7nPu7z2iaRiWGvsqsIP5nmmMYbHTt2ZNeuXW23z8w+I24SE8l33iErV07dOOvWJb/4IvqKCEnecou5JcIwyBb+HfH6zcWLUpFIq7AFclWrFl45/UEcP2690TqMgJOBRRPx/vvmRyW54il2W2/K4s47rBURQ6d46y3PfidOULzxBkX3hyh696b46iuKpKSwrPUlvmS+jQvph5Gbuf0KWQ0HO7kzYGUEBDcxdP5La7mWfdmXzdiMbdmWUzjFNNPnRV7kAA5gHONS5NGosQ3bcC/3hkyuUCCuPhTBEbY8Iw0aNOCgQYNSfna5XCxTpoxPB9b0OJ1OVq9enU899ZTtObOCMuJGCOnTcPFitCVJ5cIF+xt9OHN7PP6496ys/vqN3H57+GQMBNGzh7kVwWFQ7NoVbTH9RghB8fTTqX4vaRWH3Lkpfv7Z3jhVr7FnPZoxI8wrSiPTxYsUH39M0bgxxTVV6GrZnC9tuJ+xIpaaC4xJBDWXvEocBpv8Br7+agEe2xViB6sASGQiC7FQwMrIf/wvKnInMIGN2dhrllUHHSzBEjxA38f3kSCJSfyEn/AG3kCdOmMYw7ZsG3UFNCsTNmVk1qxZjIuL47Rp07ht2zb27duXBQsW5NGrZ7jdu3fnkCFDUtqPGjWKP/30E3ft2sX169eza9eujI+P59atW0O+mOyEEOTSpWSnTmSlSuS115LPPUfa+CKagZMn7W/2obrFQpArV5KjRkln3ZkzZaIzK0WjYEFry8lXX4VGxlAhzpyhqFM7o4NmjEM+9/nn0RYxKMTq1RS9e8k1NmxA8fLLFEeO2Ou7ZYs9RSQ+jmLDBopZsyjmzAlbynfyqtNx5UrSSdbtKHv1vTtVqQA/ekzjiy+B7w4Cj5RIp1RWrhQ264w/DOMwGi7/6rBo1FiDNaL2bf8jfmTqdOuggw/z4ajIRkpl6XbeTu3qI61cIDie46MmW1YmrBlY33vvPZYvX56xsbFs0KABV6UJx2jevDl7pslp/uSTT6a0LVGiBO+++27+5WfBq5ymjLhcZN++GZ1NDUOGCKc7JbM1XvHi1opI6dKhOVLas4e88cZU+a3S4Ke9ihWTx0neFBLDkMdNycn+yXP+PDllCvnSS+SECeTBg8GvMT3i4kV5pFC5Uurm2q0rxZo1oZ8siyCEoLj9NnvKSLFiGa1JXbtSnDoVWplcLoqa1/vvqJv2mj07pDIFwkVe5E3nr6WRnPE4yVvmWPfjc0ZeMU5gAs/xHG/gDZYRQLGM5TlG5+/8CI6wdGReyZVRkS0ro9LBZ2HeesvcgdPhIP/9178xX3rJ/IhE18lXXw1e9pMnZciwnQrF3q6yZcn581MdXA0jVTnp2NF/y80770iLjKZJpUjX5dWnT/iK8gmXiyIzOApFGTF0qP0N3lvYr8OQioNFHRqxa5eMwPnxR+u2P/4YuBLilqmbfX+3cHJBXODQKaVY6FTqZln0OGgkg7ozjcVByG/2oxi6cGg7LOIitmIrv6w3IPg3Q+ugbIcEJrAgC5rK5aCDXdgl4rJldZQykkVJTpZVbc02bIeDHDzYv3HPnzevpFu3bmj8XOzU6TFbV5cuqffhu+9kGPB77wV2PPXuu+bKlx8+1CkIQf7zD/nnn9LCIi5coPjpJ4r58yn27PF/wGyK2LgxuE0/rZIydqz3ObZvl0Xq0rbPnYviqad8Vs8VAwcGZxXRQNG+XThvnV+IQ4eYULMqt1cF/7tGo1MHD5TT+MIosMHGON6YWJP92C+kTqt2GM/xBGFahdfXI1TJ2dzs4i6+ylf5FJ/iG3yDh5mxbtR6rrclWxEWCalsOQGljGRR1q+3t3GXKeP/2GfPymq58fGp4+TKRQ4YIJWVUFC+fGCKiPuySORpm4sXybx5redbt87+mHPmkDVqyH6xSOAb2jO8bOT23Khuv51ix47QLCKTIf75R1an/f57CovfRdGvX/CbvvuqWDHj+Dt3UhQu5N1x2NAp7riDwst5nujdOzi5YhwUzzwTsnsaCsSlSxSTJlHccgtFpYoUjRpRfPIJRZDfLjZzM5/kk2zHduzGbpzLuUyitb/MOq7zWwEBpU9LNVYLmU9LAhPYgz2oUaNBgzGMoU6dBg0+xaf4A3/gbM7mOq7jaq62JWNBFvQ5n6DgL/yFvdmb9/JeDuZgruf6kKwlK6OUkSzKihX2Nu3ChQOf4+xZ8rff5MYf6lsaF+e/AuK2pKTxew6aL76wZ4lJExhmyjvvpB6T6XByAe5iMnwcLRQuRLEztN/uoonYvJmiaRPPdeaKp3jySd8WiIYNQqOIuC+XZ9ZMcd+91krFzJkZ5Ro3LrjU9xoo/vknLPc5s+CiiwM5MOVoIq2FoyqrWmZxfZgPW1bL9fWYzMkeY+3lXo7iKPZiLz7Fp/gn/7StrHRjN9vJ7K7jdZYyGzR4J+/0OtdJnuTNvNnjnrn/7cquObrKs1JGsijHjlmHv+o62bRptCX1TsmS9hSQfPlS/1+rFvn556HNxzJ2rL0w4nvusR5r/37Po6fOmGXtV3DfvaFbTBQRW7dS5M/n2wJx910UTmfGfs2ahk4RyRUvx9y3j+LFFynatbXu4zAommX8JRHHjlHExAQui40kb1kds5wrDjpYmZWZQN8OVxVZMSBF5Hk+n6JouOjic3wuxarhuPoAZZ2d0zxtuobN3OzX3HZT6y9gxsyQgoK38BafR1I6dT7GzFsOItwoZSQL07Gj9Ub65ZfRltI7Q4ZYO8o2aSKTxO3dSx49GrgScu4cOWkSOXSoTGeftojep5/as4z07m09z4sveq7pVzRjEiyykxq67fDXzIy44w7rTKxjx1KMHEnx3HMUkydLP5rXX7e2QDgMihvrmLeLcVA8+ADFq69S6FezsdqtoVPU+/m+eOcd7+3dob7PPUdRrarna4UKSqtKNndMvsiLzMM8lpuyWVROIKnq06bXP8uzbMu2PtsaNNiYjU1rzPyP/wvYOuPr0ZzNvVpllnKpZV+DhldflZyAUkayMLt3k0WKeN/UdZ286y7/w1sjxcGDZKFC3mV3p8tfvDj4ed5/3zNKxj3f/ffLJG8nT9oLKbYjS/v2nn2Ooai9zfD33zOMJVwuip9/lmG/jW6maNeO4ssvKRIznxlX7Ntnf+N3GKmVePPmoXjvPfmvr/4OQ+YumTfP95i6JtsNHx6YFaOc72J2Yvp0igrlPdtXr0bx7bfydSFkTZ2ZMykWLfJ5HJXd+JpfW26sOnXezbt9jnE9r/d7o3cnFfuAHzCe8bb6/MJffMrQgz0Ccp719dCosRG916F4jI9ZKj46db7H97z2z+4oZSSLs2sX2aaNZ76NPHlk4rNMuG95sGGDzFnitj44HHIduXKRs2YFP/6kSb6VC8MgW7WSuVWeecZ3AjXDkKnp7XzR7djR85hmL8rZ2wzTeceKS5ekpcH9jd9tQdFAcW11inAkQAkCsWRJ4McZGijuuD2jMuL+uUljiguykJoYP97znqRVbr78kqJMaf/njnFQPPmk+fpcLooVK2R9oTVrsr3Vww6TOdnW5nwzb/baP4EJtiwraTfpSqxEF12cxmm2+1klSHuWz4ZUGQHB8vReFLIzO1v6pjjo4GiODsl7lNWwu387oMiUVK4MLFgA7N8PbNkCxMYCjRoBefJEWzJr6tQB9u4F5s0DFi8GnE6gbl2ge3egQIHgxk5KAoYM8f26ywUsXQosWQKMHQtcvAh8/DHgcABCALou5bn5ZmD+fEDTrOe84w5g7tzUn+fhfgzgRMRoTt+dSpUCatf2fK5vH2DxL/L/zqt9hZD/7toF3HUnuHETNF23FioS5M4dXP+ff854g0mg/T3A9OnA11+DM2cCJ08At7YGcucCDh2Sb1br24C+fYEDB4DDh/2bV9PkGz1woHkzXQcaN/ZzUdmbCqhg2cYBByqjstfXdmEXLuGSrbn0q49JmAQBgSEw+cVOhxNOHMdxn68/hIcwHuNtj2eFBg3FUdzra+VRHjp0CAif/Z1w2rq3OZoIKUdBkRMtIwrvzJ9vzxfkgQdS+/zzj6we3LWrrBz822/++alcvCiPzdzWkWuwg1cQSydMjjDSF33bu9fekcfChSG6U8EjkpIoShQPzjri6ypdytMy5PZLadXSIyRVvPuuf+M6DJn99vvvo3jnsi5OOm35fPzKX732/5f/2rY01GbtlHF+4S9+WSkcdLAP+5iuJR/zhcwqolHzecyylVst++dhHl7ghWDemiyL3f07k3wFU4SCM2eA9euBbdtSv3BnN+x8SXY65RdqN9deC7z+OvDll8AHHwDNmtmziLjJkwf44Qcgb17AMID/UBUd8TWStFg4YaQ2dFw1ND72GPDkk56DfPed9aQOB/D11/YFCzNaTAzw7HPhGfzIEfmv+4Pqcsl/ly8HHn00td2ff9obLzYWuKEW8PwQYPsOaG3bhk7WABEQ+AW/4HE8jj7og7fxNk7hVFjnZHIyuG4duHIleOKE3/0NGHgH70CD98+qDh3t0A7N0dzr61VQBSVQwnQOHTqaoik2YiNaoAUA4AiO+CWnE070RE/TNlZy2MUBB8qhHHqgh9fXa6AG+qCPz3sGAK/hNeRF3pDIk22JkHIUFMoyYs6BA+RDD3k6bFaoQE6cGNpw2czA3LnWlhHDkAUGQ82BA+SwYTKxW/785O3X7uPaO4bReX1NiqpVKbp0oVi2zKvvgXjlFeu8GIZO0aVz6AUPAuFyUfR7LKNPRzgvXUvJZivuvMNenx49wrP+kyelM+6zz8qIHpsJ7fZyL2uyZsq3eAcdKVVgJ3Ji6OV0uWQEU1pLlsOg6NKZYu9ev8ebwzksxmIEkeIPYdBgH/bhFZqX9n6Nr1mGyv5Mz4rPP/JH21YKnTrbsI1lvpFu7GYrosYtaxEWSXmf0oYSX8truZvmKaCTmcxn+AxjGJMSjgyC+ZgvxzquulEOrDmEfftkbg9ftWAGDsxeCsmlS545SnxdV4MiMg3iyy/tHTEMHRr6uRMTpZL0ww8BZYcVQkhHzwcflLVi6t8kk46FSxkxdIoJE+TcnTvZO976+OPQ3jMhpPIRGyPliY1JPUrq2oXi0iWffS/wAiuyoulG+AW/CK2sPXp4v08OQyooASgkSUzit/yWb/JNfsJPeIT2QtWTmJQSmpvWsdO9Qb/IF732KcqitpSRruzKS/R9/90s53LbCo47lwkIlmIpdmZnDuAALuIi0xDi9JzkSX7KTzmWYzmTM23Jmd1RykgO4Z57rIvSLVsWbSlDy9ix5laRunUzX+izuHKFomAB6031v/9CN6fLRTFmDEWRwp5zNGtKsWFDcGNfvixzcYTDWhLjoLhatVF88YU9JS7EOV3EuHHmylK7tj6jbz7kh5aWAXcESUhkXbjQ+n7ef39I5rJLMpM5iZM8wnxzMzfrsA5ncZbXtPIf8SNT60VJluQ2brMtg6BIySTrz8Od2O0iQ1CsS6GUkZzAwYO+Q1fTOnN2zlyW/6ARghwxQjqUGkZq+DAgw3WPH/d/zMRE8quvyBdeIF95RdYICrnc06ebbxohzO4phKDo28f35p07F0WQixQHDsikZe4Nz21FMHT7+Ul8XVdjwEVCAkXFCr4Trxk6xaOPhuKWpa7rwgWKPLmtZfzzT6/9G7KhrYyeq7gqNPK2a2udmM7QKQ5HNunWLu5ieZandvWR1lLSkA15hmcy9BnHcR5HWm5rRSM24jEe81sGQcF3+S5zM7dfColGjR/xoxDcBYVSRnIAixZZH1cApJc6YyFHCNJLVnBbnDhBbtok0677w4EDskpwr17kE0+Qv/8e2JHUggVk0aLyXqVNoNakCRnqv9/iyy9TI0ncV/78FK+9FtI8F2LFCmtrQv36wc8jBMXSpbJOTd++FG++SbFnD0X9+hkzq/pTE+a5VMVM7NhBUa6sfN6t5LgtMnffRXHF3IfB7zV99pk9602/fl77202HPp/zQyNvmTL27mkosg3axEknq7Kqz6Mqgwbbsq3Xvsd5nOM5no/xMT7DZ7iSK4MqnreKq/y2jmjU2JANA55TkYpSRnIAixfbU0aqVQufDD//TN55Z+oGft110nHWTmK2v/+Wx0xprTsNG5KRjG5dtkzK7s3C5HCQVavKjK6hRCQnU/z0E8Wnn8oMpCb+BwHP0f0he0comwIvLS8uX6Y4dEgqIA0byMRt7dtRLFggrQujR1OULJE61411KD7/nKJDB2u5csVTnDmTOtfFi/J+3XorRd0bKTp1kvfQFZqjDo91jRtnbWnQQHFPe6/9m7CJrQJt6+hHyWgzeatUtqeMeMkIHC7sJjDbzu3WgwVJoIX7KjIC3+JyAEoZyQFcuEDmzm0dWWKRiDJg3L4b3lK/Fy5MPv44+eyz8khl5UpPq8Xq1TIja/q+ui4Vg8mTfc8bSm6+2TO7avpL02Tq+XAgzp6lmDiRol8/iieeoPjxx5BtrqJ2Lb+OQ2yP63TK8vQ1r/dtcdFA0eZuecTidMridKdTC5uJBx6wd4wzY0ZI7oW/iKlT7VlGfBwPTeEUy2/d1Vk9qG/7HvI+8YS18lSwoKUFyUWXV18Of5nACbaOqXTqHM/xQc9nxU28yW9FRKfOxmwcdtlyAkoZySE8/bT5ZupwkAEEUFiycqU9q4ympSoc9erJoxghyCpVzAvqxcTICsbhZMcOe/LXrh36ucWMGdJvQ9fkxubeTCqU94h4EWfPUnz8McXzz8ujnO32vkmKRo3sKSN+hB0Jp1NGt9gZ19ApBvT3Po6dcN00ETX+cpZn+TpfZ0VWpE6d+Zmfj/Ex/sN/7K3zzBlpmbGS0Ydn+GVeZg3W8PltXKPG7/hdQGvzKu/27fIz5EvB0zWKF17w2f93/s72bJ8ibwVW4DiOCygS5HN+bnvDj1SK9OZs7rcyAoKf8tOwy5YTUMpIDuHKFbJ161SrQlolxDACqwXjcpGrVpE//CB9Oby5MnTpYh3F400xqlzZXhZVXSdfey34+2PGsmX25C7ivfhrwIj5862/df/2G8WECXJT1DXP0NL770+p6+JzjrFjrX00csVT+PE7JSZO9M8xNS6W4uTJjOP07WvvCGnePH9vLY/yKKuxWoZjEgcdjGMcf+JP9tb64ou+5XIYFC1bmPr4HOMxNmVTgtI/IoYxBGXeiZmc6fe6LOWdM0fe0/T1fTTIMOwk7xaPT/iJR16MtJaBuqzLc7T/+XDRxUqs5NeGP4dzQnULfPI237ZlqUn7WbmW16qw3BChlJEcRFISOW0a2aABmTevdMbs00f6ZPjLjBkyYVrazfiGG8if0v0NL1LEP0UkraWhfXtzq4i7XceOIbk9PtmyxZ7M114bujmFEBQ31LTeiB0mm7XDoLi1lelmKE6coMifz7dCYugUTz3ln9zVqvofJTMz48Yr/vzTul+RwgFVMr6bd/u0SOjUmZu5eYqnrNfrclE891xq5eC0G/0dt1OcPWtLnnVcx5f4Ep/n85zGaWHd4MS2bRQDB1KULUNRtIhMrf/VVz6P/rZxm+kmbdDgo7QfqbSGa2xv+Bo1FmZhJjL8VT9P8zQLsqCpH4870RkoI3fs5lRRWKOUEYXfvPWWbyuFppFpv6gWKhS4MlKqlPnREiCVla5dw7teIcgaNczDo3WdHDMmhHNu3erfZm52WURHiN9/p8iX11MhcX9bbtfWr81enDwZmIyfZjR1CyEoOnYwt9xMmeL3vd3JndaboND4Jt+0v+79+ylefpni0UelcrIuNE6nmYFBHGTp2BnLWFvKG0ku4iK/lJG5nBvmFaaymqtZgAW8JmGrxVp8kk9yBEdwNVeHzJdHIVHKiMIvjhwxt1ZomrSGuPevu++2tm74uuwqMl72sZDzzTfmClGJEqSXk4aAEb/+GhpFJMZB0f0h6/kOH6YYNYqiZk2KihUp7rqL4ttv/XaUFSdOBCbnihXex0tIkMc1DiPVb0aDTAwX4Bs/iZOst0EB3u28M6DxsxvX8lpbisOP/NHWeJu52dZ48YznAi4I8+oycpzHOYZjeCNvZBVWYVu25ff8PmTJ5xTeUYXyFH4xdarcgn1BAqdOyXpvADB4cGptM38pVQpo3jy1rlx6dB0oXBjo1i2w8f3hvvuATz4BYmLkvA5HqlzlygHLlgFFioRwwlKlQjOO0wkcOGjZTCtVCtqLL0LbvBnanj3QFi6Eds890HQ/f/WLFAEqVbJfYVDXgerVgVtu8S5XXBy0jz8G9h8A3p8IjH4ZmPklcPgItEce8U+2qzjhBEw+w3JiIHn7loDGz26YlbwPpN31uB61Udu0YBwATMREtEEbW2OGCoLYju3Ygi1wwokiKIJbcAsaoAF0qG0wM6DeBQUAYOtW630mJkZWBAaAO+4ABg3yfx5dB3r1AmbOBMqXlz+nxTCA3LmB77+X/0aCPn1kEdk33gAefBDo3Rv49ltg505Z8TeUaNWrA3XrBj+QYQAlQlOV1A6apgGPP2Gvsa7L66OPZT+zcUuVgta/P7QhQ6B17QotV66AZayP+rDYB2E4gfrzD4Onwls9NyvQGI3hgI9vBFcxYOBG3GhrPA0a3sAb0K4+0uOAAzfgBjyAB/yS8wIuYBd2BVzxWECgH/qhKZpiNmZjMzZjDdZgBEagCqpgOZYHNK4ixETIUhMU6pgm/Dz6qHV0jGGQr7+e2kcI8pNPyDx57B27GAZZpgzpTjlx5ozMVVK5MhkXRxYvLkOVrxZszbaIn38OzVHN999HVu7kZIp27eSxipkja90bI5pgKy03bs9LI9n3EYHuBPeWB8Xs2VGRLzOxjutMj1McdLALu/g97nf8jkVYJGUMt29Ga7bmCZ6wNcYGbmAHdsiQxr01W3MZl/klz+t83ffngTrzMA8P8ZDf61TYQ/mMKPzi22/tKRRbtmTsm5AgE6vlz5+xfdq6MdWqkTt3Rn5tmRExcWLgSojDoLjpJopA8+8HI3dyMsU771BUrpQqT9VrKAYPlpEbGzdGXKa0bO52AwucAR1JGZUQEJzY/6rM06dHVc7MwmiOTtmU094vgwYrsRKP8mhA4yYykXM4hy/xJb7O17mZm233fZ/v+4zycde5+ZJf2pbDrRj5ehg0OJIjA1qnwhq7+7dGmnkKZA7Onz+PAgUK4Ny5c8ifP3+0xcmWOJ3ySGLfPvn/9BgG0KoV8PPPvsdITAS2bJH9S5cG5s8HNm8G4uKAu+8Gbrst47FMToY//QTcdy+QkJD6pGFIPe6dd4Bjx4Exr8nzM/dxh9MJNG4CzJsHrWjRaIgNAKDbiUjTgMKFLY9jIgX79sF/v0/FSyNcmNMZcMbI5xusAka8CrT94WrDNWuh3XRT1OTMTMzFXLyO17Ee6wEA+ZAPj+ARDMdwFEVwnzFedeKx8iNxsxzL0RzNLdvFIQ6HcAhFYO7Q9Tt+RzM0sxzvOlyHbdhmS0aFf9jdv5Uyokhh506gZUvg8GH5MymVByGA2rWBxYuB9PsfCaxeLZ1A//0XKFAAuP9+4IEHgDx5wi8zCWzcCBw7Jl0o6tSx72OZGeC5c8CMGfLmOpOBuvWAvn2hlSsnXz94EJg2DdizB8ifH+jUCWjUKNNs/pkNrl8P1JdKxrn8wOHSQIFzQOkjVxvoOlCzJrBho7qH6TiBE7iCKyiBEohDXMDjEMQszMK7eBdrsAYaNNyCW/AknsR9uM9UMbkH9+AH/AAXzL3j3f4pz+AZ03Y/4SfciTstZS6HctiP/ZbtFP5je/8Ov5EmeNQxjXf275d1X268UebL6NGD9FHV3DZnz5ITJsjU7eXLk02byoRq3spaOJ1kz56pxzHuEGCALFnS+5FOKJk3Tx79pD0WuvZaeeSkyLmIxwd7P94ydJl1dtWqaIuYbXHRxZ7smeHox+03MpiDfebxEBQpmWqtHho1dmInS3l2cZflWAaNFF+UX/gLjzG8dSj2ci+XcAlXczWTmRzWuTIDymckm/P992RsrGeuD7dC8NRT3lO4uzlzhpwzh5w6lVyxwrytGcOH+04YZhhSIQl1xVtSyjtggO98KIDMJKvImYiVK33Xlnn0UdPMtYrg+ISfWG7+s+i9RoWTTluKiFvR6Up7WRFbsEWGdPfpH3GMS/m/23H3MA+H8tbwb/7N1mztMW9JluQ7fCdbJ1pTykg2Zvt2WUjOLHPoBx9k7JeUJBWV+HjPttWqkUuX+p5v3Tryvfdk9Vp3xfkLF6yjaDSN/Oij0K5dCLJfP2tH29y5w6MIZQUSEsi9e8NfaJC8mk31jz9kHZ333qNIYw4TTqeswzNkCMXQoRQLFwZdlVgcO0bx6qsUTZtQNKhP0b8/hftDSVL89x9FfJy5A/AnnwQlg8I7goLX8lrTFPM6dTZkQ59jVGM123VkPqK9Py6buIm5mdtSIUn7cNDBciwXsrTwG7iBeZjHpwxP8smQzJMZUcpINmbQIOsw3PLlZcE7N0KQHTp4V2B0XY6XXiH59195XONWLNx9mzSRIb1WCoGmka1ahXbtdqN+NE3KmJM4flxGNeXNm3of6tcn5waQdVscOiQVjJEjKT791GstFvH336l1dgw9Ndy3ZQuK7+dTlCsrf46NSc2wWqkixV9/BbQ+8dNPFHlye6aRd4/7wgsUFy7IuixW0UgVygetFCkycoInbG/2vmrSTOAEW/3zMz8v0P63jQ3cwEZs5DGG1ZGQgw4+xsdCcm8asIGlMrSWa0MyV2ZDKSPZmJIl7W3IaQvlLVli3lbXpd+J24K9b59M/+4t5bvDYT+le716oV17y5bmFiH3FRNDPvFEaOfOzBw+LAscpn+/8mkX+AgmcXWjwRTPPEPxyy/mBfYSEyn6PSY3fEOXioSuyWOPceNS+oodOygK5E+tdZM+9FjXvNeecRgy5fuuXX6tT/z3n5TBrJ7Nba3th0evXx/M7c5x2DlGOMqjtpWRK/TihEbyCq+wAitY9g/UkrCFWziHczif83kDbzAtngfK1PX+KD3e2MRNlutx0MHe7B3UPJkVlQ4+G3Plir12ixcDs2fLaJePP/adfh2QETPbtgFr18qfx4wBzp3znvLd6ZSvWeFwANWq2ZPVLitWyG3WCiGA+PjQzp2Zefxx4NAhz/erE+bgIEvhY/RF7T8/gpgwAbj9NuCGmuDu3d4HeuQRGRolhLySk+UNT0gAnv8fUKI4WLIEcEsj4OJF7x8Ql0v2EV7SiLtcwKVLwPjx/i3w/fflB8/bmIAMoVqyxP5458/7N38OZAmWoC3aIg5xiEEM6qIupmKqTLvvhWIohjIoYzqmBg3X4lrEw/svZyxikYQkyzEWYZG9RaTjelyPTuiEdmiHHdhhmeo+AQnYh30BzeVmK7ZatnHCiU3YFNQ8WZ4IKUdBoSwjnjRsaF31Nv0VF2ev3RdfSJ+DXLnsHYVYtfn8c/KZZ8jq1clKlchOneRxUKA+hDEx9tccpSSgEefQoYyfh9vwE53Q6ISXTKkxDnmE4k6FexWxcWNoMsPauXLn8itpmyhVMrTzZ/c0v0Hizlqa9mjBbUVox3ZMYpLPfmbWBo0aP+SHPuf1x7pymZeDWmM+5rM1z04Gl6nxa35ta57GbBzUPJkVZRnJxgwY4PsLoi8SE+21y5dP5rKyY31xWyi8pWvQNKBRI+Dhh2X+ru3bZaqMefNk8rQBA7xbOJKTZTG+ceOAiRNlEra0NGxoL3HajTcCjRtbt8sObNiQ8fPwKoaB0KBrXm6y0ymTyUye7Pn89Onm5rNQcuWKtKzY5dKl0M3dqhW0ihVNm5AEFywAb7sNjI8D42LBZk3BuXNBO6a5LMxyLMcQDAEAj3wfbivCAizAOIzz2vdJPIlmaOaz+Fwe5EEykpGABK+vGzBsy+lPW2+0QzvT2jwaNFyDa1AFVYKapwVaIBaxpm106GiP9kHNk+WJiGoUJMoy4klSkvSd8Nc6YnXlzUtevEieP2/P6uG2jqT3U4iPl/lHDMN8nAkTPNf17beyPg2Q2lfTyC5dUiNjvvrKWqZChcgDByL+tkSNhQs9138NdtizDlx3ncc4onMnc5+MUF7xcf5ZRurVDY1sDsPSX0QIQfHss6nt0/bVQPHoI9k6PPh+3k8HHabf4ouzuE/rSAIT+DJfZn7m92oZ0aixERvxIi9m6CsoeB2vs4zIuZk3B73ONVxjGbnzMT8Oeh6S7M/+Pi1GOnXmZV7bdXuyGsqBNZtz+bKMqkkfpmtXifCmVLzwQur4d93l3XnV1/XCC+TkyeTs2TKPSf/+1hE/ZcvKxGkk+cMPnhE7aS/DIJs1k22FkEX9fI15zTXkiez5O+2Tkyc9j68a43d7G3PhQh7jiH79UqNTwnnFOCh69/JrjWLSpNDM/bF1OKiYO9d6nE8/9Uv+rITd44st9J3VcAd3mEaPGDR8RqpM4iTLuWczNIUOp3Iqdeoeypf7/4/zca+Ouxd5kSu4gr/xN57maS+jZuQyL6fkGEl7XwwazM3cfhf/y0ooZSSHcPYsuWAB+c03csMO1CpSrhx5JE1I/e+/27e8OBxk376ecpUoYa/vxo1Swaha1VqRcmdWFUIqPjVqpL5WpoysKJyQELl7n5no1StVeQzYMrJ8eWg2fHeIr7fKvoYuw3P/+cev9YmEBIpGN3uP3rErz/PP25urSWNzK4yuUdS4LttaR/Iwjy1lZCM3+hzjKT5lK9HYGZ7J0FdQsDd7p1gN0m7cIPgEnwhpkrCt3Mr+7M9KrMRyLMeO7Mhf+WuGOS7zMp/m08zLvCkyxTKWvdjLllUjmcmcxVlswRYsxVK8htdwOIdzP/eHbC2ZEaWM5CDWriUffNDaEmFmPTEM6WSa9hZ/+aU9hcThkNaKtBQoYE+WVatkCnurdoZBtm3rOYcQ5KlTMrlXTk8bcfasLAvgfr9WoT6TYbKhGjrF+PEeYwghKFo0D2zDT3vliqd44w2KIoXlz7Ex8tJAUawYxYoVAa1RnD9P0bOn/8c1tWtRfPGFLeVBJCXZHzebmuDsZCzNy7y8xEs+x7iO19lSaBZxkdf+goKzOZuN2ZgGDTroYAu24DzOi0q20gQmsCmbej1qMWiwKqvyFE9FXK6sgFJGcgjTpknlwq4iYnbpOjl2rOf4M2bY6ztpkme/Ro2sFRmHQx6pzJ5tb44aNSJ3X7MiFy+Sb7who5Za42c6NY1OzUc0TflyFGfOZBhDnDkjk5a52wXip2HoFH/9RXHlCsWMGfL4p39/ipkzKUJguhIff2xPjmuvpTh61C8LhkhIsL/OI6HJzpnZsIr+MGjwCT5hOkY1VrOljHzP7y3lEVcf0eQ9vmfqX2LQ4NN8OqoyZlaUMpID2Lo19E6sFSt6zuF0St8OX/4jmkbmyyc3wrR8/rm1ItKli2z788/2rDnNmgV+r1wu6eh5771SqbnlFulA6yWxaLYgOZkUc76iyJ8v1Trh9ge5oSbF7t0++wohZH2XQYMoHuhG0aypf8pIjIOiR/ewrc1WCHKMg6Jbt8DGv+5a70dMaa/SpbJtFldBwYf5MEFk2IANGryBN/AszX9xurO7pROsRo0HmDU8za3S3IMyK2wCc+g5sQlKGckBDBhgzyLijyOqpmXMAfLHHzLvSPpxDEPO/8MPGWVLTibvvNO7smQYZLFisn4KSSYmymyvVnJ9HKBje0IC2aaN571wO8sWK+aZqTa7IS5epJg8meKJJyj+9z+KpUsD8nUQU6dSVK5kXyHJkzsMq0kjj53ommXLAhv7gw/MlRFDp3j11RCvKHPhoovv831WYqWUzbYAC/B//B/P0frv8CqusrSutGVb7uVebud2r74jmQUXXbasPCC4i/5lFs4JKGUkB1Cpkj0Fo0kT8rPP7LXNk8f7XFu2kF27pio/uk62b0+uXu1bvoQE8tlnPQvqaRrZrh2Z/ov522+bK1PlygVe+K5/f98WJMOQzrbpLTuKjAiXi2LePPtHNWF08BTTp/lWRnSNonv3gOcXSUkUd93lfXxDlw6uV7ynM89uuOjiHu7hDu7w+1v/UA71aV3JzdwZLCfVWC1kUTKhRFBY1rFxPw7yYLTFzXQoZSQH4M7JYXUtXizbW2VudThkVIYZFy6Qe/b4d7xx8aKUYeFCcr8Px3EhyOHDUxWEtPlLKlUidwaYBPHECXtZW7NxpGZIERcvWlfF1TWKa64JnwxffCGVAl91cYYO8SuHidc5kpJkdeC0mV+LFpEF+S4Hl/kzpyAoOJ3TPZxZ4xjHXMxluqEP53Dbc7jo4kIu5GAOZl/25Xt8LyxWlnZsZ3rspFFjDdaIum9LZkQpI9mYy5fJ+++3p4g4HOTRo7Lf/PnmxyAxMdE/svjvP3LIEPK++8iHHpIVZ5O851ayxRdf2DuaatMmdGvI7ohHHzHPR6JrFG++GZ65d+wwj/bRNYoBA0I3X3Iyxc6dFNu3UwTzQYwQJ3mS7/JdPsNn+DJf5nZuj7ZIFBTcwz3cxm1swRaWvhcg+Bt/sxx3J3eyOqsTlBV4YxhDjRrjGc9pnBbSNSzjMkuZQz1ndkEpI9mYDh3sh9y6nUTdvPuu7JvW/0PXZfK0+fOjs55w8skn9pS2YJxjcxriwAGKkiV8Wybq1KYI07mXeOop69DjXPFeI4WyM4KCr/JVxjCGOnXGMCYlPLcjO3rNdhppdnCHraMOjRo7sZPpWKd5mmVYxtRa8R2/C6n87/JdgvCaIO0ZPqOsIj5QtWmyKVu2AF9/bV2bxjCAUqWAt9/2fH7wYGDHDuDpp4GmTYGWLYHRo4G9e4F27cImdtSoXt26jcMB1KgRflmyC1rZssCfq2SRobQ4HEDXbsCvy6DlyROeyX/60Xul4LQkJMhS1TmIN/EmhmM4kpEMAYFkJKfUlZmHeeiMziAYVRnXYI2tdgSxHMtN20zBFBzBEZ8VhDVoGI7hIV3zYAzGeqzHQ3gIZVAGJVES7dEeS7EU4zEeGrwU6VLYJkJVsRShYuZM+Tff6f13MIV69WTBuZIlM75WpYosRJcTaNoUuOYaYPdu3wqc0wn07RtZucINz58HzpwBihSBljdvyMfXKlYEfvoZ3LULWL9ear9NmkArUSLkc3lg9cH3t1024CIu4iW85PN1F1xYiIX4A3+gMaJXPdJX8bxAmIZpKYX7vEEQW7AF27AN1+P6kM1bF3UxFVNDNp4iFWUZyQS4XMDmzcC6dXL/MOPECevxHA6gWTPvikh2hgkJ4Gefgb0eBrs/BE6YAJw9g48/lpV+fVX77d9fVvnNDnDtWvDee4DChYBKFYHChcAHuoFbt4ZlPq1KFWidO0Pr0CH8iggA3HyzdWVhTQPq1Am/LJmE+ZiPSzCvauyAA9MxPUISeacxGtuyHmjQ0AqtTNscwzFbcx7HcVvtFNFHKSNRRAh5jFK+PFCrFlC/PlCiBNCzp6zw7o3SpaWXg9W4pUuHXt7MDFevBiqUB3r2AL74Apg1C3j6KaBMabQ8Pgu//JLxKKZAAeDVV4H334+OzKGGP/4INL4F+OGHVDOQ0wnMnQs0qA/++Wd0BQwF/QeYWz0cDqB9e2hlykROpihzBEdgwDBt44QTR3AkQhJ5pzzKoz3aWyokBDEIg0zblEZpW4pNaeSwP4RZmICUkYkTJ6JixYqIj49Hw4YNsWaNvbPAWbNmQdM03HvvvYFMm60ggT59pO9GWsUjOVkexdSvDxw6lLFf9+7WR+a6DnTrFlp5MxuktBIdOQK4du0FbmsNnDolX3Q65U0ipf/Agw+guViKv/+W1qevvgJ+/BE4ehQYNsy3xSQrwcuXga5d5LrTf0CcTiApCejcCbT68GRytJtvBp4fcvWHdJuRwwEULw68+17kBUsH9+8Hhw0Da9cCr70WfPBBcOXKsMxVHMVT/EN84YADxVE8LPP7wyf4BJVR2bTNa3gNt+AW0zaP4BHT13XoqId6qA4bTmOKzIG/nrGzZs1ibGwsp0yZwq1bt7JPnz4sWLAgjx07Ztpvz549LFOmDJs2bcp77rnHrzmzYzTNokXm0R2GkTESxk2fPuYVbm0WJ82SeKvY+1GeJ+k0TCIsHAZF8+wdLiMmT7aXjCwbhEwJISimTaO4trpnBM2jj1AcOhRt8Si++44iLtYz6scdCv344JAngzvHc4xnvGWUyq/8NaTzBsoZnuEIjvCofguCdVmXP9BLOmcvnOd5VmEVr9E02tXHz/w5zCtR2CFsob0NGjTgwIEDU352uVwsXbo0x4wZ47OP0+nkLbfcwk8//ZQ9e/ZUyghlFlKrVO4Oh6xIm57kZHLgQBmSq+syP4iuy/ZDhmTfCrZCkH37puYGcd+n4yhibyM+fDjaSwgbok8f89wfGmR9muH2E0pldoQQFLt3U2zdSnH+fLTFIUmKf/+V99ksnfz774d83tEc7VMJMWiwBVtkytDTy7zM8zzPRCb63fcAD7A+66eE2LqzpBZkQX7Nr8MgrSIQ7O7ffkXTJCUlYf369Rg6dGjKc7quo3Xr1vjT5Dx69OjRKF68OB555BH8/vvvlvMkJiYiMTEx5efz58/7I2aWYN06a4d/pxPYtk1antPicEg/h6FDgTlzgOPHpY9Ily4Z22YXnE5g/Hjgk0/kz2n9ZgrirL1BTp+W8c7ZETtnTWT2OJO6iqZpQKVK0RbDk/ffT/0+4YtxY8H+/aGF8L0YgRG4hEt4A29AgwYdOgjCCSduxa2YgzmZMvQ0F3IF3LcsymL11cdCLEQiEnEDbkBHdEQ84kMopSfu+xqDmLDNkRPxSxk5efIkXC4XSqTzmi9RogT+/fdfr31WrFiByZMnY+PGjbbnGTNmDEaNGuWPaFmO2Fh77WJMPu9lygBPPRUaeULBqVPAvHny3zJlgHvvBYKNKiWBiROB116T/iHeOIJSKIeD5uNoOrTsHF7UogXwycfmbZxOoHnziIiTY/nma+tvGQcOyIRBtWqFbFoNGl7H6xiEQZiBGdiLvSiEQuiMzqiHeiGbJ7OhQcPNVx/hZhVW4U28ie/wHZKRjLIoiwEYgEEYhHzIF/b5szth/Zp04cIFdO/eHZMmTULRokVt9xs6dCjOnTuXch04cCCMUkaHNm2sIxQLFJD5QjI7Lhfwv/9J60yfPsDw4dLRtmRJGS1kFf1jxpAhMlGbL0UEACbjUbhM8vcl08B8tkPnfkWwfn1gcjidwDffAPfdJ6NLO3QA5s+3diaOGPffL81iho+oCsMAqlXLmKhMEVquXAltOz8pi7IYhmH4BJ9gLMZma0UkknyGz3ALbsG3+BbJSAYAHMRBjMAINEIjnMbpKEuYDfDn7CcxMZGGYXDevHkez/fo0YPt27fP0H7Dhg0EQMMwUi5N06hpGg3D4H///Wdr3uzoM7J1q2dKdm/1UrLK8f6AAeYOtePHBzbupk32UrkXxknuQ1kmIqPPRBIMXkQu1sJGOhzSr8ZfH84TJ8i6dVMdi9P+e/PNZGbJPC7+/JMib56MviMOg6JIYYqtW6MtolfEtm0U8+dT/PorRaL/vgO25hCCYvVq6fg6Zw7FqVPhmadRI9/VhNO+H8ePh2X+9CQzmbM4i83YjEVZlOVZnk/xKf5He397FeRu7k5Jre/LJ6cbu0VbzExLWB1YBw0alPKzy+VimTJlvDqwXrlyhZs3b/a47rnnHrZq1YqbN29mos0/PNlRGSHJzz5LdTxNG0UDkG3bBlcgLhQ4nbLI3qlT0nnUGzt2WCsL8fFkIG/dwIHWTr7uqwL2cDVukgqIZjBRkxvyHpRnI6z0UPJy57avQAhBNm3qW3E0DPKOO/xfW7gQO3dS9O9PkSe33PgKFqB4+mmKAweiLVoGxOrVFI1u9tyoixahGDuWIoRe2GLlSoobanrOExdLMXAAxZUrIZuHJMVnn5krIjEOis7mdVdCRQIT2IqtMmyeOnXGMc525EpO53/8n6ky4nagPcIj0RY1UxI2ZWTWrFmMi4vjtGnTuG3bNvbt25cFCxbk0aulYbt3784hQ4b47K+iaTzZuJHs3ZssWpTMl49s3FhWmg2yAnpQXLpEjh5NliiRuunWri2Vp/RKybBh5hYetwIwaZL/cjRpYk8RSTvPa/eu5vMYw+F4mXdgETW4vLZ75x17Mvz5p725N23yf31pEVeuUMyaRfHyyxRvv02xe3dw4wlBkZAQ8jDSUCH++IMiPs530btBA60HsTPPqlVyHm/WCkOnuPuu0Co+SUkUrVt7n89todq1K2TzmdGarU030DjG8QAzn5Ka2ajHepZh0yD4Db+JtqiZkrBW7X3vvfdYvnx5xsbGskGDBly1alXKa82bN2fPnj199lXKSObm4kWyQYOMVYHdPz/xhKdC8tBD1spITAz5wgv+y3LbbebHP+kVjNtvJ8eOta5orOtkJy9fTleulOupUUMey7z4Itmvn7V1xjDIkSMDveOk+PxzikIFU745uwydLk3jphqd+cG4C8xuEclCCGmpsDrOWLs2+LkaNrSeJ8S5V8SVKxRPPCFzn6Sd5/bbKXbuDOlcvpjKqZabp06dLzCAX0wTBAUP8iB3c3dA4bqZkTqsY0sZmcu50RY1UxJWZSTSKGUkcjz7rLVysXBhavvBg603a10n33rLf1nee8+eMlKlCvn++/JY6803/VdGhCAHDZKvpT8yc19WytbTTwd2v8VXX/ncJJM0g4u1lnToLg4eLPPLRAuxfTvFa69RPP88xUcfUZw9G/hYq1db54SJcVA8+ohnPyEoFi6kuKc9RZXKFLVqUbz0ks/8MWLrVut5HAZF2zYBr8V0nefOSXm//TZi1hCSdNHFEixhawOtzdohmVNQcBInsTqrp4xdgAX4P/6PZxn4ZyUzMIiDvCZXS/vQqHEv90Zb1EyJUkYUfnP5Mpk/v7UV4K67UvusXGmtLOg6GYjLwtmzZKFCvpULTSO7d/fsY+dYJf0xzYQJ/h0HeRvvgw/8X59wOinKl7PcMO/EQmqazLwbacSFCxQdO6Zu3O6EXrniKd5+O7Axp02zl6Tu5oapfZKSKDqlkSOtMpE3D8WyZRnnmT/f3jzXVAn09kSVy7zMn/kz53EetzLVOfkP/mFLEQHB6qwetByCggM4IGVTTju+QYPX83qe4Zmg54kWW7nV9B466GBbto22mJkWpYwo/GbDBnubb758qX2EIFu08G090HXykUd8TumTbdvIn34ip02TClJahcQ9V/Pm8lgpLUJI/xZf8qR3YHU6yVKlglNG4uMDi6gRS5dabpSJMDgHHVLm2rHD/3kCRQhBcVtr334dGijeeYfivfcoalwnFZX8+Sgefphi40bf486eba0g6BrFra1S+wwb5jurqaFLheSq31pKHxv3V2igqFc3bPcwHDjp5CiOYgEW8NgUG7Ih13AN53GebWUkFFEgC7nQdA6DBgcyND5A0WI8x9N9tJV+bWVYRvnemKCUEYXfbNxob/PNn9+z3+nTqc6mDofc8N3HHZ06kQkJ9mVYupSsV89zvvLlyQ4dpC9HuXJky5bkrFm+o43+/ZcsUiTj8ZG30N5164JTRABpWQkEMX26rc1yDeqlyD9iRGBzBSTfkiX2jjl0zVNRiHHIa84c7+OeOiWjWayUkXffle0vXqTIl9e8vaFTvPyy5zwJCdJh1Krf66+H/V6GCkHBh/lwBguEe6OMZzw/5ae2lZHlXB60THfzbstok9zMzQu8EII7ED2+43dsxEYpa8rDPBzEQTzKo9adczBKGVH4TUICWbCg+cbrcMi6OukRQioSjz5K3nef9MFYt86/+RculBYNX8cy/vid7N8v/Vny5Em1pnTqlFGm5cvtKRx58pCFC3s+V7RoYFFCbsT331tu9snQ+QPuTLn3vXoFPp/f8vXsYV3vxkyZiI2h2LvX+9gDB/h2LHUYFIULpfiliB9/DNjCIV5/3VyRKlSQ4sSJsN7HUPI7fzfd9HXqvJE3siIrWioiLdkyJPVqCrGQLcVnDdeE4A5EnxM8wX3cxwT68S0rB6OUEUVADBtm7QC6eHHo501OlqHEZg6ruk4ePOj/uCdP+rbOHD5s7SRrGDLXSEIC+f33smrwwoXB54ERV67IPCAWm+yD+CxFGXn22eDm9Eu+W1sFpoik3ex9hPmLK1dkWK27XVpLRaGCFGtSNy4xb569+a7N6P8gXC6p+LgtNm5FSdcoChf2mCcr8CAftHSmBMGxHGv6enEW5yVeColMRVjEljKynutDMp8ia2F3/84+VbMUIeGFF4CmTQFNk5cbd5bxESOAW29NfT4xETh8GLh4Mbh5f/gBOHZMbv++0DRgyhT/xnU4gCJFgLg476+XKgW0a2deP87lAvr3l2O0bQv07g3cdZd53SA7aPHxwPARPl9PpgM7WBVz0RGATEn/4IPBzekXJUr4Ti9vB5cL+OlHry9p8fHA/O+Bb78Dbr8DqFwZqHMj8MqrwPYd0OrXT2183XXWczkcwA0Za71oug7t/YnA6jVAz55Aw4YyJf47E4Dduz3nyQJswRY4YVH7BsAarEFRpJbg0KHDgHwv66M+NmIjciN3SGRqjdZwWJQ5K4iCuB7Xh2Q+RTYlQspRUCjLSGRJSCDffpusXDnVOtC0KZm2CsDevWTfvtJ50+0Y2qaNjK4JhFdftRci3KVLKFboyYIF5vPGxclMtOFACEExdCiFrjFZN5is6Slp7TejBstif4p1pm2EHfbFggXBWUY0UNxQMzSyNG1i7kirgSIcJrtMRmM2tmWFSO9oCYJFWIQLuCAkRzNpWcmVlrIMZxapbaEIOcoykoU4eBB46SWgUydZYO7LL4GkpOjJExcHPPkk8N9/wKVL0vqxfLmswgsA//wD3HijtFIkJMjnSODHH4FmzYC5cwObUwjzNroOxIehMvjUqeaWkaQk4JNPQj8vAGiaBu2114D/dgHPD8W6Cp0wAz3RTl+IG/XNOOooB0BaYr78Mjwy+OTOO4H6DQK3jjgc0hIRCt57X7753mTRNODBh3JEEcD7cB90G/VNBTL+Mp3FWbyDd6BB89IjcG7BLRiHcQCQYn0BZEVdDRpaoRVewAshnVOR/dBIM8N45uD8+fMoUKAAzp07h/z580dbnJAyfjzw/PPy76kQclN0uYAyZeTmXrNmtCX0hJSKyJYt3ivWahoQGwscOiSPR+zy77/2rPFffQV07Gh/XCtOnwaKFbNWhMqWlZXfI8G2bcD06fL4q1gxeTQTrerNPHUKuP8+4PffU8tMO62PCVJY/xe0G2+UY5HAsmXAkiXyw3PTTf9v787Do6iyh49/q7uzgIQkCCQBg0hkV2Akkh8gqGMEhEEBFQRkGzcEEYjKMjriO6hEDIgsgoM6biCLso0iogFmANlEERRk32QIGJYkgiTprvv+USQQSG9Zuro758PTD6Ryu+rkGlMnt+49F+69F83D511q+3YY/jT85z+XDkZGwoiR8MILaKV5pBQgTnOaBBLIJrvYhMMTP/MzTWhSqjgUim/5ljnMIZNMalGLRjTi3/yblazEgYPGNGYYw3iERwihlM80RcDy+P7ti2Ga0grWxzQffuh60mSNGsbkS3+ycaP7lScWS8l26u3UyfWGdHXqGJNGT50yzt+tm1L33WeUgC/pgoidOz1bTWO1luz8/k4/ftzYD+f29kpv29bYVG/37qJtdN3YS2bkSKUntXJe7+PK12U18vXdu5XetMmliaShIca/Y2oqfdUq72Les8d4hJSeXuYb3QWCDWqDilSRRR7FeDKpteCRyWRVgnLIl8lSWeoudVfhdS3KUnj9XqqX+kP9oRzKu/1+dqqdKkWlqPvUfaqv6qsWqUUqX5lYcliUGVlN4+ccDqVuuMH9Tf2118yOtKjJk92vttE0pXr08P7cmZlGwbKCr/3yfoiJMRKHpUuVqlTJOKZpxstiUSo0VCknZS1cOn7cs2SkWjXvz+3v9KVLr95ErqBuiJN11Hq9G9wnIVaL0j94/9J7MjKUHhtT/DJhq8WoOeLtOvAK7qQ6qSaoCeoWdYtqoBqo+9R96jZ1W7H1Ry7/Y1VWlapKV1elg+rgtK6IRVnUIOX5+nOHcqhhaliRhKrg3A1UAymxHgRkzoif++EHOHjQdRtdh48+8k08nnI1t+JyWgkeS197LWzcaMxFSUqCWrWgWTN47TXj0cX583D//cY8FV2/lCroOuTnQ+/esGGD59fTdVi5EqpUcd3OZjPm8gQTtWMHPHC/MSHm8mdUDofRqc+koJYsKfqevDz337RgnO+u5EsfT58OmZnFP97RdeOa/++lEn0dFVUNajCGMWxlK7vZzRKW0IlObueDOHDQjKtXHXlqC1sKH8MUR0fnfd7nMIc9Ot/LvMw0pgEUrhIqOPcBDnAXd5FLbonjFYFDkhGTnD5dtu18pV079/MrwJjIWhLh4TBoEHz7rTHv5Mcf4dlnoVo1eP11o01xs5yUMhKg1FTPrqPr8PDDxmrPc+ect7NYjMm1Tz/t/dfi16a8YfztbMqYxQKvvlr0mNXqeTZ6+Vrq994tfoJRAYcDvvgClZnp2blFsf7KX10mIxYsxBNPBzqU+BrzmOd2Ga+GxkIWuj3XOc7xOq87/bwdO/vZz6eUYEa8CDiSjJikTh33bSwWuP768o/FG7fcAq1aXZrLeCVNg0qVoH//sr2u3Q6ffeZ67qTdDp9/boyguDNr1qXVKa6mcEdHw9dfG2UwgsrCha47U9fhuy2oY8cKD2lWKyTf7Xp1jcUCLVqgVb9U44KTJ93Ho5Rn7YRTccTxJm8CXJWUWC/++ZAPi6x48dZp3P92ZMXqUbuVrOR3XBcosmBhLnM9jk8ELklGTNKwIdx6q+tfNHUdHnvMdzF56pNPoHr1q+9JNpvxWrgQoqLK9prnz3u2iEPX3RdgUwreeMP1oyRNg4QEYwVN69bexRoQPMnYAA4eRB06hMq9OFT+7LOuRzl0HZ4bVfRYtWqeXevyBEaUyFCGspCFNKbo0rT2tGcta7mDO0p1/njiUbhegGnHTjzxbs91hjNu2+jonOKUx/GJwCXJiInS0oxkpLibotUKLVoY8yD8Tb16xpyXlJRLSUdICPTqBVu2QOfOZX/NKlWMVZzuVK5sjGa48ttvRg0VVyMiSsH+/c5HgAJe3bru22gatG8H9W6AGtVRI0YY35Rpk4zPX945Bf8eMxYeeqjoeQYMdD2aYrVCcjJazZqexy+ceoAH+Imf2MlO1rGOwxxmFatIovQ1XwYwwOl8kQIhhNCLXm7PdT3uh31t2KhHsA1LiuJIMmKi9u2NMuhxccbHlz+S79jRKMdQHkW+ykJsLEycaMxpycmBP/6Ajz+G5s3L53oWCzz6qOt7ms1mzDdxV7bC1S/2V/L/KjwlNPhJ9/M/Lv/if/8dZkyHVrcahU82bYY+fY2COHFx0L0HrPkP2quvol2ZXQ8bBhERzguWAbw4rnRfj4+o/HyUJ5OmTKah0ZjGtKUtdfDgmbCHEkhgCENczk15kRephvvRsDu4g+u4zmUbO3Ye5VGv4xQByEere0olGJf2Xs5uN0qSp6YqNWWKUleUeRAXHT+uVGxs8WXjrVZjF90jR9yfx+FQqnZt98uqbyqbSuZ+Sc/OVvpNTd2XWL/yFWJT+kPe1+TXf/hB6dfVNs4RGmKcx6IpPaKK0pcsKYevsOzoFy4ofepUpTdscGk5cseOSl+50uzQTGFXdvWselaFqBClKU3ZlE1pSlOVVCU1QU3wqtz8p+pTlzVRuqguZV6+XviWp/dvqcAapI4fh9mzYelSY9SiRQsYPPjSJniB6sAB4xfzjRsvbean60aF0rlzoUEDz87z2mvwt7+5Xhk0e7YxGhOs1KlTMPgJWLSo6CiIprkeErJa4eivaLGx3l0vPx+WLYNVq4wJQImJ0KcP2jXXlPArKH/qjz/gnk5GBVq41C9WqzHElvoa2qhRzk8QxDLJZBGL+I3fqE1tetCDqnj/83kBC3iKp/iN37BiRUfHgoWBDGQ60wnHT4eHhUc8vX9LMhKEvvkG7rvP2FOm4JGEzWb8/H/0UXj7bc9XaPqrH36AdeuMe0ObNsZ9zRu5ucZ+L//5T9GEpCBR694dFiwo3aa1gUIdPWrcbO12+PsLntW9/2I52j33lH9wJlOjR8OkNNdZ6/pv0YJylrPv5JPPcpazj31EEEFXuhJHnNlhiTIgyUgFdeQINGpkFAZz9l924kR47jnfxuWPcnNh8mSYNs0YSQJjXufw4cY0h4qQiFxJNWoIe/a4b7jiK7QOJa9XEQjUH39AXCxkZztvZLPBAw+gzfX1LoZCBAZP79/Bulagwpo1yyiq6SrFfP11Y1deD/cn82tHjhi7BJ85Y9Ru6dnTs1U3YNTlGjsWRo0yNqWzWIy5mIE+alQqyXcbz8JcraMOCzPWpQe7n35ynYiA0U/p6b6JR4ggVpF/7AalTz91v1rkt9/gu+98E095uXDBWDlTt64xyvPaa/DEE8Yqn0mTvFsFY7VCfLyxMKRCJyIAQ4a4/gayWmHAADR366eDgaerZgJgdY2/+YM/OMlJ8sk3OxThJyr6j96g46q0eUna+auHH4YPPyy6N41SRpLy7LPw5ptmRxiYtCZNYNbbxuSZy+uIFMwWbvEneD3No3Op8+dRs2ahWt6CurYa6sYE1LhxqIJnYv6uSRP3a+ttNmPSkvDIRjbSjW5UoQoxxBBJJEMZylE8mKckgprMGQkyHToYixVc/XKraXDokGcl6f3Rli1GSXpXqlSBjAzw44Uafk2tXw+TJxn19fPzjUp3Q4bC4MFolSu7f/+pU3DnHfDzzxcPXLYKJSICvv4GrWXLcou/rKghQ2D2P13/D/XVSrS77/ZdUAFqEYvoSU+AIoXTbNiIJJL1rKchDc0KT5QTT+/fMjISZJ580v0oe4cOgZuIALz/vvvKqL//DldsOhswsrKMScY33mhMz6hZE0aO9GzDXAClFOrMGVROTolj0Nq2RftsEVzIhXw72r79aCkpHiUiAPTvB7t2XSrdUsDhMKrkdb7HmCDq7159FRo3vno2c8HzvBEjITn56veJIk5xir70RUe/qoKrHTtnOUtv/LDctPAZSUaCzL33wl/+UvzcB6vVKJc+ebLv4ypLx46536fGajXaBZrjx42aKWPHGuXo8/KMOT7Tp8PNN8P69c7fq3JzUZMmwQ114dpqEFkVldgSNXcuJR0A1TTN2CDPC2rvXvjyS+dZscNhfFELFpQoJl/SoqJg3XoYNbroPgNNmsAHH8KkSVdXnBVX+Rf/Io88p/vaOHDwAz+whS3lcn2FIossssl2u7eOMIckI0HGajV2tx050kg8Lte2LWzYYPwcDWTVq7sfGdH1wNx3rW9fOHz46jmRdrtRvO4vfyl+vo/KzTWKc40eZSwxKrBtGzzcF0aOKHFC4rWvvnJfWc9igRVf+iaeUtKqVkV75RXIOAGHj8DxDPhxO1q/fpKIeOhbvnWbBFiwsB4X2XYJ2LEzgxk0pCFRRBFJJDdxE+/wDjoy8difSDIShEJDjU34MjJg+XKjwObu3UaBr6ZNzY6u9Pr0cT8yEhpqFC4LJD//DKtXO//adN14hDNnTjGfnDAB/vvfq7OYgo+nTjXmf/hCbq5n+94U7ARcRpTdjlqyBDVyJGr4cGNEqAyvoYWEoMXHo8XESBLiJVd72ZSknSfs2HmABxjGMPaxr/D4LnbxGI8xgAGSkPgRSUaCWESEUWW0e3fPy6QHgjvvhNtuc16UTNOMOiqBtvo0Pd39PVzTjAq7l1P5+fDWDNdLTK1WIyHxhebN3a8vt1jg5mZldkn1/ffG7sI9uht9MWumMSJUuzaqDOuAFAz3n+d8mZ2zIriN29y20dE9auept3iLZSwr3OymQMG/P+ZjPuKjMrueKB1JRkTA0TRji5PbLv7cstmMe21BcjJkCLzyinnxlVS+ByUXlCpm5GT/fsjMdP1GhwPWrytxbF7585+NAjCuMiul4LHHyuRy6tAh+POdl8ro5udf6syzZ6BLZ9QPP5TqGrnkMolJ3MANRBHFNVxDEknMZ77MQfDAQAYSTrjTkQ8rVm7lVlpSNiusFIopTHHZxoLFbRvhO5KMiIAUHW080li/3lhB1Ls3jBkDe/cakz0DsZR7y5bu62dpGtxyi2/iKSnNYjEmd1qtzueOpE1Cu8719vEemzwZzp8vfjRG143jL79c4tNf4AId6MAoRnGYw4XHv+M7HuIhRlExN8rzRjTRzGc+VqzYrij8bcVKdarzCWVXUj+TTA5y0GWiqKOzjW3kUraPC0XJSDIiApamGfWmpk6Fjz4y7jc33mh2VCV3++1Qv77rRMpiKWYn4YQEuPZa1ye3WqFt2Q2Bu5WYaMyUdjZptoyqliql4IP3XU8icjhg6RKUu9LuTrzCK6xj3VXzCwo+TiONLwmMybhm6kpXNrGJ+7m/MCGpSlWGM5zv+Z4EEkyOUJhJkhEh/ISmGZNTw8Kcl7V46y2j5H2R94WEGAXJXD0WcTjg6afLNmBX/v532LHD+eeffQa1eXPpr5Ofb9QtcUfX4fRpr0+fRx4zmOFyoqMVK1Px0XycAHcLtzCPeZznPGc5yxnOMIlJ1KJWmV6nOtW5gRtcToi1YKEFLQgjrEyvLUpGkhEh/Mitt8KmTdC1a9HcIjHRWAzjdJrF2LHQvv3VCUnBx08/bawL9gF17hz8823Xox82G0yfVvqLhYSAJ1WZrVb3o0fF2MteznDGZRsHDtaytvBjdf48av581OTJqA8+QJ096/V1g10IIUQSiaWcbkEaGsMZ7rKNjs4IRpTL9YX3JBkRws/cdBMsXgwnTsCPPxp1RzZtgi5dnL9HCw+HL1fAaxPh+usvfaJFC/h4DrwxxXfLUbdvN0rgulJGu91qmgYDBrouPGOzQbfuaBERXp/f08mpBe3U9OlQKw56P2TUfBk0EOLiUC+8gJIN9XxqKEO5l3vRLv4pUPDvfhf/CP8ge9MIEWSUUkZBEpsNrUoV319//Xpo58H8lJgYtOMZpb/e4cPwpxbG45orJ7FaLMboycZNaM2be33uXHKJJZaznHXaxoqVu7iLFW92hpEjnJ/s6afRpsgOjlfaxjZmMIPVrAagPe15iqe4hdLP1LZj523e5k3eZC97AWhKU0YykkEMKreRGXGJp/dvSUaEEGVKZWVBbIzromY2G3Ttaux/UxbX/PFH6HafMYwUEmIczM+HGjVgwUK0228v8bmf53lSSXU5b+Tz8wvpXKO/USbXlb370BJkomaBN3iDFFKwYcOOMQm54N8TmchzPFcm11EosslGQ6Mqcg/xJdkoTwhhCi0yEvr1c70syG6Hp4aV3TWbN4d9++Hfn8PwEca55y+AX4+VKhEBeIEXaEObq36LLvh4BCO4Z14WXLjg+kRWq7HLowDgK74ihRSAwkTk8n+PYhSfUzZVgzU0IomURMSPSTIihEDpOionB+WucqqnXptolP11tizomWfR7ryzbK51kWa1onXpgjZxItqkSWgPPmisNCqlSlTia75mAhO4jku1UVrQgjnMYTKT0Q4ddr9hEsDhQ6WOp7w5cPAZn5FMMtdxHQ1pyAu8wK/8WqbXmchErDhPWK1YmcjEMr2m8F+SjAhRganDh1HDhkFkVeNV5RrUXwehdu0q1Xm16GhY/y088yxERV36RNOmRkG0iYF1kwknnFGM4ghHOMUpsshiK1vpQx9jQmRUlPsS+JoGkVG+CLfEcsmlK115gAdYwxqOcYw97CGVVBrQoHBeR2ld4AKrWIUD531WsErpd9xMhhZBQeaMCFFBqZ9+gtvbGxM/Ly8aZrMZrxVfobVvX/rr5OcbpdrDwqBmzaDcZE4dPmzsjePux+l/16Ld5sPic14awQimMa3Y+TEWLIQTzgEOEENMqa6TRRZRRHnU9jd+ozoBuAW3AGTOiBDCBaUUPHA/ZGdfXb3Uboe8POjRHeVuQqYHtJAQtDp1gnq3W+366415Ms4Kz1mtxmZKbdv6NjAvZJHF27ztdKKujs4FLvAu75b6WlWp6lFCcy3XEk2A7XgpSkSSESEqolWrYM8e548WCiqWLljg27gC2ay34d57jX8XzB8p+DvxVliy1K+Tsf/yXy7gehKujs5Slpb6WhoaQxjicmmtFStP8qTLeSUieEgyIkRFtHat+wmXNpvRTnhECw+HzxbBtxtg0F+hcxfo2xdWfAXr16NVq2Z2iC65S0QK/EHpR8sARjKSJjQpNtmwYqU+9XmWZ8vkWsL/eTD9WwgRdDydKub/U8r8iqZp8H//Z7wCTFOaum1jw0ZzvC8eV5wIIljLWlJIYQ5zyCMPMErF96EPk5lMJJFlci3h/yQZEaIiat3a9U63YHy+TRvfxCNM14QmtKY1m9nsdJWLHTtP8mSZXTOKKN7jPdJI4zu+A4zN9MpqwmoeeaxlLVlkUY96NKe5y83zhHlkNY0QFZDSdbgxAY4eLX7eiMUCVarAsf+hXXON7wMUptjOdtrQhgtcKDYhGcxgZjLzquN27GxmMznkUI961Ke+L8J1SqFII41UUjnNpd2am9GMqUzldkpXCE94TlbTCCGc0iwWWPgpVK589dwRm81Y/bFgoSQiFUwzmrGRjdxJ0YJ0NanJ67zODGYUOa5QTGUq13EdbWlLJzrRgAa0o13hSIcZnuEZRjGqSCIC8BM/kUwy6ZR+k0ZRtmRkRIgKTO3ZA6kTYO5cYzmv1Qrde8CYMWi3lH6jMhG4DnGIvezlGq7hVm4lhKur2T7Hc6SRdtVxK1ZCCGENa0giyRfhFtrOdpfzWixYuJ7r2cc+2SjPB2SjPCGEx9SFC3DmDERGolWubHY4IgD8yI+0oIXTz1uw0IQmbGe7T+dpDGMYs5hVZL+b4qxi1VUjQKLsletjmhkzZlC3bl3Cw8NJSkpi8+bNTtsuWrSIxMREoqKiuOaaa2jRogUfffRRSS4rhCgnWng4WlycJCLCY2/zNjYXayB0dH7iJ7awxYdRwU52uk1EAH7hFx9EIzzldTIyf/58UlJSGDduHN9//z3NmzenY8eOnDx5stj21apV4/nnn2fDhg1s376dQYMGMWjQIL766qtSBy+EEMIc29nu0U3/Z372QTSXXMM1Ho3EVEYSb3/idTIyefJkHnvsMQYNGkSTJk2YNWsWlStX5r333iu2/R133EH37t1p3LgxCQkJDB8+nGbNmrFu3bpSBy+EEMIclans0U0/nHAfRHNJN7qhcD37wIaNe7jHRxEJT3iVjOTl5bF161aSk5MvncBiITk5mQ0bNrh9v1KK9PR0du/eTXsXG3Dl5uaSnZ1d5CWEEMJ/dKWr2zY2bCST7LZdWXqIh4gl1mkZeQsWBjCAmtT0aVzCNa+SkczMTBwOBzExRTc4iomJISMjw+n7srKyqFKlCqGhoXTp0oVp06Zx9913O20/YcIEIiMjC1/x8fHehCmEEKKc9ac/UUQ5XZFScNOvQQ2fxlWZyqxkJdWoVmTkpiA5uYu7mMY0n8Yk3PPJuqaIiAi2bdvGli1beOWVV0hJSWHNmjVO248dO5asrKzC19GjR30RphBCCA9FEsmXfEkVqhRJSApu+u1pz1SmmhLbzdzMHvYwmcm0ohUNaUgnOrGUpXzJl1SikilxCee8KgdfvXp1rFYrJ06cKHL8xIkTxMbGOn2fxWLhxhtvBKBFixbs2rWLCRMmcMcddxTbPiwsjLCwMG9CE0II4WNJJLGHPcxmNp/wCTnkUJ/6DGYw3enucrVNeYsiihEX/wj/59XISGhoKC1btiQ9/VL1Ol3XSU9Pp3Xr1h6fR9d1cnNzvbm0EEIIPxRDDC/wAj/zM0c4QjrpPMiDpiYiIvB4/d2SkpLCgAEDSExMpFWrVkyZMoVz584xaNAgAPr370/t2rWZMGECYMz/SExMJCEhgdzcXJYvX85HH33EzJlX728ghBBCiIrH62SkV69e/Pbbb7z44otkZGTQokULVqxYUTip9ciRI1gslwZczp07x5AhQ/j111+pVKkSjRo14uOPP6ZXr15l91UIIYQQImBJOXghhBBClAvZtVcIIYQQAUFmGPmZP/6ARYtg925jd/f77oPGjc2OSgghhCg/koz4kblzYcgQyMqCkBDQdRg7Fu65B+bMgehosyMUQlQ0JzjBQhZykpPEEktPelKd6maHJYKMzBnxE4sXQ48exX/OaoWWLWHdOiNJEaKsqdxcWLIEduyAsDC45x60xESzwxImcuBgFKOYylR0dKxYsWPHho3neI7xjHdafVWIAp7evyUZ8QO6DjfeCIcOgav/GgsWwIMP+iwsUUGof/8bBg2E06cvDck5HNC6NSz8FK1WLbNDFCZ4mqeZznSnm86NZjSppPo4KhFoZAJrANm4EQ4edJ2IWK3w7ru+i0lUDGr1aujeDc6cMQ7k5xuJCMCWLXDnHajffzcrPGGSQxxymYgApJHGcY77MCoRzCQZ8QPHjrlv43DAkSPlH4uoYMaMNv4uLhO222HfPvjgA9/GJEz3MR+7fQSjUMxlro8iEsFOkhE/UN2DuWCaBjVlx2tRhtSePcboh667bvjuO74JSPiNYxxzm4xYsXIMD36TEsIDkoz4gXbt4GIBW6eUgv79fROPqCD+9z/3bZSCX38t/1iEX6lOdZePaAB0dFlVI8qMJCN+wGaDf/zD9ecTEuChh3wXk6gAPBmSA6hRo3zjEH6nN72xY3fZRkfnIeSHkigbkoz4iccfh9RUY6KqxWL8bbtYBaZBA1i1yiiCJkSZadoUmjQxngE6Y7HAgIE+C0mY7zzn+ZEfuYmbnLbR0HiYh6lHPR9GJoKZLO31M8ePw7/+dakCa7ducPfdxj1BiLKmFi+G+10UuKlRA376Ga1aNd8GJkwxk5mMZjQ55GDBgk7x84lqUIOd7JTHNMItqTMihPCIeucdeGqosazXajUO2u1Qrx58sRytYUNzAxQ+MZOZDGGIR22tWOlBDxawoJyjEoFOkhEhhMfU6dPGEt6CCqydO0PnzmgFyYkIauc5Tyyx5JDj8Xs0NPaznxu4oRwjE4HO0/u37E0jhDAew4wcaXYYwiRLWOJVIgJGMrKMZQxneDlFJSoSmYkghBAV3BGOYPPyd1MLFs5xrpwiEhWNJCNCCFHBRRONA4dX77FjpwENyikiUdFIMiKEEBVcd7pjxbv5QddyLfdybzlFJCoaSUaEEKKCq0lNnuRJNFzUnLlIu/hnJjMJJdQH0YmKQJIRIYQQTGIS/egHUDh/pLj9aW7gBhazmAd50KfxieAmq2mEEEIQQggf8AEppPAv/sURjhBNNPdzPxoaZzlLHerQhjYejaAI4Q1JRoQQQhRqTnOmMMXsMEQFI8mIEEIEEYViM5t5l3fZz36iiaYnPelGN5njIfyWJCNCCBEk8slnAAP4hE+wYcOOHQsWPuMz6lOfb/iGOtQxO0whriITWIUQIkg8x3PMYx5g1AEBCje7O8hBkkkmn3zT4hPCGUlGhBAiCJziFDOZiaL47cbs2NnLXpay1MeRCeGeJCNCCBEEvuAL8shz2caKlYUs9FFEQnhOkhEhhAgCWWQVWxfkcg4cnOWsbwISwgsygVWIAKe2bYOlS+HcOWjYEHr1QqtSxeywhI/Vo17h/BBnbNhIIMFHEQnhOUlGhAhQKjMTevWC1avAZgNNA7sdRgxHvTkV7a9/NTtE4UMd6UhNanKSk07b2LHzCI/4MCohPCOPaYQIQCovDzp0gP/+xzhgt0N+PihljJA8+ghq/nxzgxQ+ZcPGNKY5/byGxgAG0JKWPoxKCM9IMiJEIPrsM9j2AzhcbPs+ZjRKdz1sL4JLT3qygAXEEgtQWLY9nHCe4Rne4R0zwxPCKXlMI0Qgev9fYLGAq2Tj8GFYvx7atfNdXMJ0D/Ig3enO13zNIQ4RSSSd6UwUUWaHJoRTkowIEYiOHXOdiBQ4frz8YxF+x4aNe7jH7DCE8Jg8phEiEMXEGCMj7tSsWf6xCCFEKUkyIkQg6j/A/chIrVryiEYIERAkGREiEPXqZdQUsbl40jr+ZTSr1XcxCSFECUkyIkQA0sLDIX0VNGtmHLDZICTEeHQTEgKT30AbNMjcIIUQwkMygVWIAKXVqoXa8h2sXQtLllyqwNq/P1r16maHJ4QQHpNkRIgApmkatG9vvIQQIkDJYxohhBBCmEqSESGEEEKYSpIRIYQQQphKkhEhhBBCmEqSESGEEEKYSpIRIYQQQphKkhEhhBBCmEqSESGEEEKYSpIRIYQQQphKkhEhhBBCmKpEyciMGTOoW7cu4eHhJCUlsXnzZqdtZ8+eTbt27YiOjiY6Oprk5GSX7YUQQghRsXidjMyfP5+UlBTGjRvH999/T/PmzenYsSMnT54stv2aNWvo3bs3q1evZsOGDcTHx9OhQweOHTtW6uCFEEIIEfg0pZTy5g1JSUnceuutTJ8+HQBd14mPj2fYsGGMGTPG7fsdDgfR0dFMnz6d/v37e3TN7OxsIiMjycrKomrVqt6EK4QQIgDsYQ8f8zEnOUkMMTzMw9SnvtlhiVLy9P7t1a69eXl5bN26lbFjxxYes1gsJCcns2HDBo/Ocf78efLz86lWrZo3lxZCCBGEcsnlcR7nQz7EihULFnR0/sE/GMhA3uZtQgk1O0xRzrxKRjIzM3E4HMTExBQ5HhMTwy+//OLROUaPHk2tWrVITk522iY3N5fc3NzCj7Ozs70JUwghRIB4gif4mI8BcFz8U6AgQXmHd8wKT/iIT1fTpKamMm/ePBYvXkx4eLjTdhMmTCAyMrLwFR8f78MohRBC+MJe9vIBH6CjF/t5HZ33eI+DHPRxZMLXvEpGqlevjtVq5cSJE0WOnzhxgtjYWJfvTUtLIzU1lZUrV9KsWTOXbceOHUtWVlbh6+jRo96EKYQQIgDMZS5WrC7bWLAwl7k+ikiYxatkJDQ0lJYtW5Kenl54TNd10tPTad26tdP3TZw4kfHjx7NixQoSExPdXicsLIyqVasWeQkhhAguJzmJxc1tyIKFkxS/WlMED6/mjACkpKQwYMAAEhMTadWqFVOmTOHcuXMMGjQIgP79+1O7dm0mTJgAwGuvvcaLL77I3LlzqVu3LhkZGQBUqVKFKlWqlOGXIoQQIpDEEef0EU0BHZ044nwUkTCL13NGevXqRVpaGi+++CItWrRg27ZtrFixonBS65EjRzh+/Hhh+5kzZ5KXl8cDDzxAXFxc4SstLa3svgohhBABpy99PUpG+tLXRxEJs3hdZ8QMUmdECCGC02AG80/+ieLqW5GGxhCGMJ3pJkQmykK51BkRQgghytJ0pmPFykxmYrn4p2B57xCG8AZvmByh8AUZGRFCCGG6oxzlEz7hBCeIJZbe9OY6rjM7LFFKMjIihBAiYMQTzyhGmR2GMIlPi54JIYQQQlxJkhEhhBBCmEqSESGEEEKYSpIRIYQQQphKkhEhhBBCmEqSESGEEEKYSpIRIYQQQphKkhEhhBBCmEqSESGEEEKYKiAqsBZUrM/OzjY5EiGEEEJ4quC+7W7nmYBIRnJycgCIj483ORIhhBBCeCsnJ4fIyEinnw+IjfJ0Xed///sfERERaJpmdjguZWdnEx8fz9GjR2VTPw9If3lH+stz0lfekf7yjvSXZ5RS5OTkUKtWLSwW5zNDAmJkxGKxcN11gbV7Y9WqVeUb1AvSX96R/vKc9JV3pL+8I/3lnqsRkQIygVUIIYQQppJkRAghhBCmkmSkjIWFhTFu3DjCwsLMDiUgSH95R/rLc9JX3pH+8o70V9kKiAmsQgghhAheMjIihBBCCFNJMiKEEEIIU0kyIoQQQghTSTIihBBCCFNJMlIGTp8+Td++falatSpRUVE88sgj/P777y7bDxs2jIYNG1KpUiXq1KnD008/TVZWlg+j9p0ZM2ZQt25dwsPDSUpKYvPmzS7bL1y4kEaNGhEeHs7NN9/M8uXLfRSp+bzpq9mzZ9OuXTuio6OJjo4mOTnZbd8GG2+/twrMmzcPTdPo1q1b+QboZ7ztr7NnzzJ06FDi4uIICwujQYMGFeb/R2/7asqUKYU/0+Pj4xk5ciQXLlzwUbRBQIlS69Spk2revLnauHGjWrt2rbrxxhtV7969nbbfsWOH6tGjh1q2bJnat2+fSk9PV/Xr11f333+/D6P2jXnz5qnQ0FD13nvvqZ9//lk99thjKioqSp04caLY9uvXr1dWq1VNnDhR7dy5U73wwgsqJCRE7dixw8eR+563fdWnTx81Y8YM9cMPP6hdu3apgQMHqsjISPXrr7/6OHJzeNtfBQ4ePKhq166t2rVrp+677z7fBOsHvO2v3NxclZiYqDp37qzWrVunDh48qNasWaO2bdvm48h9z9u+mjNnjgoLC1Nz5sxRBw8eVF999ZWKi4tTI0eO9HHkgUuSkVLauXOnAtSWLVsKj3355ZdK0zR17Ngxj8+zYMECFRoaqvLz88sjTNO0atVKDR06tPBjh8OhatWqpSZMmFBs+549e6ouXboUOZaUlKSeeOKJco3TH3jbV1ey2+0qIiJCffDBB+UVol8pSX/Z7XbVpk0b9c4776gBAwZUqGTE2/6aOXOmqlevnsrLy/NViH7D274aOnSo+vOf/1zkWEpKimrbtm25xhlM5DFNKW3YsIGoqCgSExMLjyUnJ2OxWNi0aZPH58nKyqJq1arYbAGxXZBH8vLy2Lp1K8nJyYXHLBYLycnJbNiwodj3bNiwoUh7gI4dOzptHyxK0ldXOn/+PPn5+VSrVq28wvQbJe2vf/zjH9SsWZNHHnnEF2H6jZL017Jly2jdujVDhw4lJiaGm266iVdffRWHw+GrsE1Rkr5q06YNW7duLXyUc+DAAZYvX07nzp19EnMwCJ47n0kyMjKoWbNmkWM2m41q1aqRkZHh0TkyMzMZP348jz/+eHmEaJrMzEwcDgcxMTFFjsfExPDLL78U+56MjIxi23val4GqJH11pdGjR1OrVq2rkrlgVJL+WrduHe+++y7btm3zQYT+pST9deDAAVatWkXfvn1Zvnw5+/btY8iQIeTn5zNu3DhfhG2KkvRVnz59yMzM5LbbbkMphd1uZ/Dgwfztb3/zRchBQUZGnBgzZgyaprl8eXqTcCU7O5suXbrQpEkTXnrppdIHLiqk1NRU5s2bx+LFiwkPDzc7HL+Tk5NDv379mD17NtWrVzc7nICg6zo1a9bkn//8Jy1btqRXr148//zzzJo1y+zQ/M6aNWt49dVXeeutt/j+++9ZtGgRX3zxBePHjzc7tIAhIyNOPPPMMwwcONBlm3r16hEbG8vJkyeLHLfb7Zw+fZrY2FiX78/JyaFTp05ERESwePFiQkJCShu2X6levTpWq5UTJ04UOX7ixAmnfRMbG+tV+2BRkr4qkJaWRmpqKt988w3NmjUrzzD9hrf9tX//fg4dOkTXrl0Lj+m6Dhgjmbt37yYhIaF8gzZRSb6/4uLiCAkJwWq1Fh5r3LgxGRkZ5OXlERoaWq4xm6UkffX3v/+dfv368eijjwJw8803c+7cOR5//HGef/55LBb5vd8d6SEnatSoQaNGjVy+QkNDad26NWfPnmXr1q2F7121ahW6rpOUlOT0/NnZ2XTo0IHQ0FCWLVsWlL/NhoaG0rJlS9LT0wuP6bpOeno6rVu3LvY9rVu3LtIe4Ouvv3baPliUpK8AJk6cyPjx41mxYkWReUvBztv+atSoETt27GDbtm2Fr3vvvZc777yTbdu2ER8f78vwfa4k319t27Zl3759hUkbwJ49e4iLiwvaRARK1lfnz5+/KuEoSOKUbP/mGbNn0AaDTp06qT/96U9q06ZNat26dap+/fpFlvb++uuvqmHDhmrTpk1KKaWysrJUUlKSuvnmm9W+ffvU8ePHC192u92sL6NczJs3T4WFhan3339f7dy5Uz3++OMqKipKZWRkKKWU6tevnxozZkxh+/Xr1yubzabS0tLUrl271Lhx4yrU0l5v+io1NVWFhoaqTz/9tMj3UE5Ojllfgk95219XqmirabztryNHjqiIiAj11FNPqd27d6vPP/9c1axZU7388stmfQk+421fjRs3TkVERKhPPvlEHThwQK1cuVIlJCSonj17mvUlBBxJRsrAqVOnVO/evVWVKlVU1apV1aBBg4rcEA4ePKgAtXr1aqWUUqtXr1ZAsa+DBw+a80WUo2nTpqk6deqo0NBQ1apVK7Vx48bCz91+++1qwIABRdovWLBANWjQQIWGhqqmTZuqL774wscRm8ebvrr++uuL/R4aN26c7wM3ibffW5eraMmIUt7317fffquSkpJUWFiYqlevnnrllVeC7hcmZ7zpq/z8fPXSSy+phIQEFR4eruLj49WQIUPUmTNnfB94gNKUkjEkIYQQQphH5owIIYQQwlSSjAghhBDCVJKMCCGEEMJUkowIIYQQwlSSjAghhBDCVJKMCCGEEMJUkowIIYQQwlSSjAghhBDCVJKMCCGEEMJUkowIIYQQwlSSjAghhBDCVJKMCCGEEMJU/x+bkTGFvdt/sgAAAABJRU5ErkJggg==","text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#SIMPLER DATASET\n","import matplotlib.pyplot as plt\n","import nnfs\n","from nnfs.datasets import vertical_data\n","nnfs.init()\n","X, y = vertical_data(samples=100, classes=3)\n","plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap='brg')\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"jxbgeGWnludV"},"source":["
\n","STRATEGY 1: RANDOMLY SELECT WEIGHTS AND BIASES - DOES NOT WORK!\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Dgmi2YlKludV","outputId":"7dfc3a29-c1e8-40ed-9ca3-cf9541026cd9"},"outputs":[{"name":"stdout","output_type":"stream","text":["New set of weights found, iteration: 0 loss: 1.1016203 acc: 0.3333333333333333\n","New set of weights found, iteration: 1 loss: 1.1002508 acc: 0.3333333333333333\n","New set of weights found, iteration: 2 loss: 1.0992025 acc: 0.3333333333333333\n","New set of weights found, iteration: 3 loss: 1.0986239 acc: 0.3333333333333333\n","New set of weights found, iteration: 10 loss: 1.0984299 acc: 0.3333333333333333\n","New set of weights found, iteration: 22 loss: 1.0976521 acc: 0.36333333333333334\n","New set of weights found, iteration: 150 loss: 1.0974255 acc: 0.3333333333333333\n","New set of weights found, iteration: 874 loss: 1.0972673 acc: 0.3333333333333333\n","New set of weights found, iteration: 894 loss: 1.096895 acc: 0.3333333333333333\n","New set of weights found, iteration: 1036 loss: 1.095428 acc: 0.3333333333333333\n","New set of weights found, iteration: 88633 loss: 1.0952065 acc: 0.3333333333333333\n"]}],"source":["# Create dataset\n","X, y = vertical_data(samples=100, classes=3)\n","# Create model\n","dense1 = Layer_Dense(2, 3) # first dense layer, 2 inputs\n","activation1 = Activation_ReLU()\n","dense2 = Layer_Dense(3, 3) # second dense layer, 3 inputs, 3 outputs\n","activation2 = Activation_Softmax()\n","# Create loss function\n","loss_function = Loss_CategoricalCrossentropy()\n","\n","# Helper variables\n","lowest_loss = 9999999 # some initial value\n","best_dense1_weights = dense1.weights.copy()\n","best_dense1_biases = dense1.biases.copy()\n","best_dense2_weights = dense2.weights.copy()\n","best_dense2_biases = dense2.biases.copy()\n","\n","for iteration in range(100000):\n"," # Generate a new set of weights for iteration\n"," dense1.weights = 0.05 * np.random.randn(2, 3)\n"," dense1.biases = 0.05 * np.random.randn(1, 3)\n"," dense2.weights = 0.05 * np.random.randn(3, 3)\n"," dense2.biases = 0.05 * np.random.randn(1, 3)\n"," # Perform a forward pass of the training data through this layer\n"," dense1.forward(X)\n"," activation1.forward(dense1.output)\n"," dense2.forward(activation1.output)\n"," activation2.forward(dense2.output)\n"," # Perform a forward pass through activation function\n"," # it takes the output of second dense layer here and returns loss\n"," loss = loss_function.calculate(activation2.output, y)\n"," # Calculate accuracy from output of activation2 and targets\n"," # calculate values along first axis\n"," predictions = np.argmax(activation2.output, axis=1)\n"," accuracy = np.mean(predictions == y)\n"," # If loss is smaller - print and save weights and biases aside\n"," if loss < lowest_loss:\n"," print('New set of weights found, iteration:', iteration,'loss:', loss, 'acc:', accuracy)\n"," best_dense1_weights = dense1.weights.copy()\n"," best_dense1_biases = dense1.biases.copy()\n"," best_dense2_weights = dense2.weights.copy()\n"," best_dense2_biases = dense2.biases.copy()\n"," lowest_loss = loss"]},{"cell_type":"markdown","metadata":{"id":"YgWpa0BKludV"},"source":["
\n","STRATEGY 2: RANDOMLY ADJUST WEIGHTS AND BIASES - WORKS!\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1zGlYl3QludV","outputId":"8fca285e-1ba2-40a1-fd09-52ef09f0f9bb"},"outputs":[{"name":"stdout","output_type":"stream","text":["New set of weights found, iteration: 0 loss: 1.1008747 acc: 0.3333333333333333\n","New set of weights found, iteration: 3 loss: 1.1005714 acc: 0.3333333333333333\n","New set of weights found, iteration: 4 loss: 1.099462 acc: 0.3333333333333333\n","New set of weights found, iteration: 9 loss: 1.0994359 acc: 0.3333333333333333\n","New set of weights found, iteration: 10 loss: 1.09855 acc: 0.3333333333333333\n","New set of weights found, iteration: 13 loss: 1.098517 acc: 0.3333333333333333\n","New set of weights found, iteration: 14 loss: 1.0938607 acc: 0.3333333333333333\n","New set of weights found, iteration: 15 loss: 1.0920315 acc: 0.3333333333333333\n","New set of weights found, iteration: 17 loss: 1.091391 acc: 0.3333333333333333\n","New set of weights found, iteration: 19 loss: 1.0910357 acc: 0.3333333333333333\n","New set of weights found, iteration: 20 loss: 1.0898421 acc: 0.3333333333333333\n","New set of weights found, iteration: 21 loss: 1.0843327 acc: 0.3333333333333333\n","New set of weights found, iteration: 26 loss: 1.0835577 acc: 0.3333333333333333\n","New set of weights found, iteration: 27 loss: 1.0823517 acc: 0.3333333333333333\n","New set of weights found, iteration: 28 loss: 1.0778279 acc: 0.3333333333333333\n","New set of weights found, iteration: 31 loss: 1.076321 acc: 0.3333333333333333\n","New set of weights found, iteration: 35 loss: 1.0729524 acc: 0.3\n","New set of weights found, iteration: 36 loss: 1.0699975 acc: 0.3333333333333333\n","New set of weights found, iteration: 47 loss: 1.0631136 acc: 0.3333333333333333\n","New set of weights found, iteration: 52 loss: 1.062574 acc: 0.3333333333333333\n","New set of weights found, iteration: 53 loss: 1.0624933 acc: 0.3333333333333333\n","New set of weights found, iteration: 54 loss: 1.0592291 acc: 0.3333333333333333\n","New set of weights found, iteration: 57 loss: 1.0574998 acc: 0.3333333333333333\n","New set of weights found, iteration: 58 loss: 1.0493913 acc: 0.38\n","New set of weights found, iteration: 64 loss: 1.0450443 acc: 0.65\n","New set of weights found, iteration: 68 loss: 1.0377563 acc: 0.65\n","New set of weights found, iteration: 70 loss: 1.0333902 acc: 0.66\n","New set of weights found, iteration: 71 loss: 1.0315365 acc: 0.63\n","New set of weights found, iteration: 74 loss: 1.0283976 acc: 0.6033333333333334\n","New set of weights found, iteration: 75 loss: 1.0214951 acc: 0.6133333333333333\n","New set of weights found, iteration: 82 loss: 1.0101981 acc: 0.6466666666666666\n","New set of weights found, iteration: 84 loss: 1.0100108 acc: 0.5733333333333334\n","New set of weights found, iteration: 90 loss: 1.0035288 acc: 0.7133333333333334\n","New set of weights found, iteration: 92 loss: 1.0008268 acc: 0.65\n","New set of weights found, iteration: 95 loss: 0.99175525 acc: 0.6\n","New set of weights found, iteration: 98 loss: 0.9812336 acc: 0.66\n","New set of weights found, iteration: 101 loss: 0.97777444 acc: 0.58\n","New set of weights found, iteration: 106 loss: 0.977026 acc: 0.67\n","New set of weights found, iteration: 110 loss: 0.97546613 acc: 0.6766666666666666\n","New set of weights found, iteration: 111 loss: 0.9656759 acc: 0.9066666666666666\n","New set of weights found, iteration: 115 loss: 0.96165353 acc: 0.8733333333333333\n","New set of weights found, iteration: 116 loss: 0.94877195 acc: 0.9\n","New set of weights found, iteration: 122 loss: 0.93169373 acc: 0.8766666666666667\n","New set of weights found, iteration: 127 loss: 0.9187146 acc: 0.81\n","New set of weights found, iteration: 131 loss: 0.91708404 acc: 0.6666666666666666\n","New set of weights found, iteration: 136 loss: 0.9127953 acc: 0.6933333333333334\n","New set of weights found, iteration: 139 loss: 0.90787965 acc: 0.6666666666666666\n","New set of weights found, iteration: 141 loss: 0.9043988 acc: 0.66\n","New set of weights found, iteration: 146 loss: 0.90065634 acc: 0.6666666666666666\n","New set of weights found, iteration: 147 loss: 0.89855623 acc: 0.6533333333333333\n","New set of weights found, iteration: 149 loss: 0.8932796 acc: 0.69\n","New set of weights found, iteration: 152 loss: 0.87403554 acc: 0.84\n","New set of weights found, iteration: 153 loss: 0.8707889 acc: 0.7666666666666667\n","New set of weights found, iteration: 156 loss: 0.8667261 acc: 0.88\n","New set of weights found, iteration: 158 loss: 0.8490861 acc: 0.87\n","New set of weights found, iteration: 162 loss: 0.84764665 acc: 0.8333333333333334\n","New set of weights found, iteration: 165 loss: 0.8428589 acc: 0.8033333333333333\n","New set of weights found, iteration: 166 loss: 0.8239612 acc: 0.66\n","New set of weights found, iteration: 167 loss: 0.7897708 acc: 0.7\n","New set of weights found, iteration: 171 loss: 0.7849403 acc: 0.6733333333333333\n","New set of weights found, iteration: 172 loss: 0.782472 acc: 0.6633333333333333\n","New set of weights found, iteration: 173 loss: 0.7803537 acc: 0.6633333333333333\n","New set of weights found, iteration: 175 loss: 0.7747049 acc: 0.67\n","New set of weights found, iteration: 178 loss: 0.77419984 acc: 0.6666666666666666\n","New set of weights found, iteration: 179 loss: 0.75924987 acc: 0.7233333333333334\n","New set of weights found, iteration: 183 loss: 0.7520049 acc: 0.67\n","New set of weights found, iteration: 187 loss: 0.7399888 acc: 0.7366666666666667\n","New set of weights found, iteration: 188 loss: 0.73904145 acc: 0.8333333333333334\n","New set of weights found, iteration: 190 loss: 0.7320137 acc: 0.8266666666666667\n","New set of weights found, iteration: 195 loss: 0.712903 acc: 0.69\n","New set of weights found, iteration: 198 loss: 0.70528257 acc: 0.7266666666666667\n","New set of weights found, iteration: 199 loss: 0.70251924 acc: 0.6966666666666667\n","New set of weights found, iteration: 200 loss: 0.69334394 acc: 0.72\n","New set of weights found, iteration: 201 loss: 0.6803275 acc: 0.79\n","New set of weights found, iteration: 205 loss: 0.6770639 acc: 0.7666666666666667\n","New set of weights found, iteration: 206 loss: 0.66997415 acc: 0.8733333333333333\n","New set of weights found, iteration: 207 loss: 0.6599941 acc: 0.8066666666666666\n","New set of weights found, iteration: 208 loss: 0.65543926 acc: 0.7766666666666666\n","New set of weights found, iteration: 209 loss: 0.62252766 acc: 0.8033333333333333\n","New set of weights found, iteration: 210 loss: 0.61185175 acc: 0.7766666666666666\n","New set of weights found, iteration: 211 loss: 0.599142 acc: 0.8766666666666667\n","New set of weights found, iteration: 213 loss: 0.5920534 acc: 0.8766666666666667\n","New set of weights found, iteration: 222 loss: 0.5918576 acc: 0.8533333333333334\n","New set of weights found, iteration: 229 loss: 0.57633215 acc: 0.8533333333333334\n","New set of weights found, iteration: 234 loss: 0.55926883 acc: 0.8933333333333333\n","New set of weights found, iteration: 239 loss: 0.5579059 acc: 0.83\n","New set of weights found, iteration: 243 loss: 0.55486155 acc: 0.8466666666666667\n","New set of weights found, iteration: 246 loss: 0.5507333 acc: 0.8866666666666667\n","New set of weights found, iteration: 247 loss: 0.545519 acc: 0.8833333333333333\n","New set of weights found, iteration: 248 loss: 0.5346363 acc: 0.86\n","New set of weights found, iteration: 264 loss: 0.5342746 acc: 0.83\n","New set of weights found, iteration: 265 loss: 0.5253426 acc: 0.8866666666666667\n","New set of weights found, iteration: 267 loss: 0.51280546 acc: 0.9066666666666666\n","New set of weights found, iteration: 269 loss: 0.50337905 acc: 0.9233333333333333\n","New set of weights found, iteration: 276 loss: 0.5024293 acc: 0.89\n","New set of weights found, iteration: 278 loss: 0.491296 acc: 0.9133333333333333\n","New set of weights found, iteration: 283 loss: 0.48956776 acc: 0.9033333333333333\n","New set of weights found, iteration: 284 loss: 0.48599878 acc: 0.93\n","New set of weights found, iteration: 289 loss: 0.48009065 acc: 0.9266666666666666\n","New set of weights found, iteration: 290 loss: 0.47792414 acc: 0.9233333333333333\n","New set of weights found, iteration: 291 loss: 0.46914592 acc: 0.9133333333333333\n","New set of weights found, iteration: 298 loss: 0.46764258 acc: 0.9266666666666666\n","New set of weights found, iteration: 300 loss: 0.45708776 acc: 0.8933333333333333\n","New set of weights found, iteration: 301 loss: 0.45304757 acc: 0.8966666666666666\n","New set of weights found, iteration: 304 loss: 0.45023417 acc: 0.9266666666666666\n","New set of weights found, iteration: 308 loss: 0.44732147 acc: 0.8833333333333333\n","New set of weights found, iteration: 309 loss: 0.44072458 acc: 0.88\n","New set of weights found, iteration: 313 loss: 0.4319237 acc: 0.8933333333333333\n","New set of weights found, iteration: 318 loss: 0.42440805 acc: 0.92\n","New set of weights found, iteration: 320 loss: 0.41862 acc: 0.92\n","New set of weights found, iteration: 324 loss: 0.41297048 acc: 0.9166666666666666\n","New set of weights found, iteration: 326 loss: 0.41245985 acc: 0.9\n","New set of weights found, iteration: 328 loss: 0.40676734 acc: 0.9233333333333333\n","New set of weights found, iteration: 329 loss: 0.40640786 acc: 0.93\n","New set of weights found, iteration: 335 loss: 0.39842996 acc: 0.93\n","New set of weights found, iteration: 338 loss: 0.39804557 acc: 0.94\n","New set of weights found, iteration: 344 loss: 0.39646825 acc: 0.9233333333333333\n","New set of weights found, iteration: 347 loss: 0.38945505 acc: 0.93\n","New set of weights found, iteration: 348 loss: 0.3871968 acc: 0.9166666666666666\n","New set of weights found, iteration: 351 loss: 0.3779128 acc: 0.9133333333333333\n","New set of weights found, iteration: 354 loss: 0.37311223 acc: 0.9233333333333333\n","New set of weights found, iteration: 355 loss: 0.37276617 acc: 0.9166666666666666\n","New set of weights found, iteration: 356 loss: 0.36852098 acc: 0.9166666666666666\n","New set of weights found, iteration: 360 loss: 0.35868368 acc: 0.9333333333333333\n","New set of weights found, iteration: 362 loss: 0.35691482 acc: 0.93\n","New set of weights found, iteration: 367 loss: 0.3429358 acc: 0.9366666666666666\n","New set of weights found, iteration: 368 loss: 0.33983532 acc: 0.93\n","New set of weights found, iteration: 375 loss: 0.33676398 acc: 0.9333333333333333\n","New set of weights found, iteration: 378 loss: 0.33293056 acc: 0.9366666666666666\n","New set of weights found, iteration: 379 loss: 0.32861033 acc: 0.93\n","New set of weights found, iteration: 380 loss: 0.32313567 acc: 0.93\n","New set of weights found, iteration: 383 loss: 0.32154855 acc: 0.9366666666666666\n","New set of weights found, iteration: 386 loss: 0.32056552 acc: 0.9333333333333333\n","New set of weights found, iteration: 392 loss: 0.32019016 acc: 0.93\n","New set of weights found, iteration: 394 loss: 0.31832498 acc: 0.9366666666666666\n","New set of weights found, iteration: 400 loss: 0.315471 acc: 0.9333333333333333\n","New set of weights found, iteration: 401 loss: 0.3055538 acc: 0.93\n","New set of weights found, iteration: 407 loss: 0.3045038 acc: 0.9333333333333333\n","New set of weights found, iteration: 410 loss: 0.30153093 acc: 0.9366666666666666\n","New set of weights found, iteration: 417 loss: 0.29838136 acc: 0.92\n","New set of weights found, iteration: 420 loss: 0.29762506 acc: 0.93\n","New set of weights found, iteration: 428 loss: 0.29648978 acc: 0.9333333333333333\n","New set of weights found, iteration: 434 loss: 0.29306 acc: 0.9333333333333333\n","New set of weights found, iteration: 435 loss: 0.29192674 acc: 0.93\n","New set of weights found, iteration: 440 loss: 0.28488693 acc: 0.9333333333333333\n","New set of weights found, iteration: 444 loss: 0.28334972 acc: 0.93\n","New set of weights found, iteration: 448 loss: 0.28309777 acc: 0.93\n","New set of weights found, iteration: 449 loss: 0.28108674 acc: 0.93\n","New set of weights found, iteration: 453 loss: 0.27773702 acc: 0.94\n","New set of weights found, iteration: 461 loss: 0.27312914 acc: 0.9266666666666666\n","New set of weights found, iteration: 467 loss: 0.2729932 acc: 0.93\n","New set of weights found, iteration: 472 loss: 0.27115387 acc: 0.93\n","New set of weights found, iteration: 473 loss: 0.26995963 acc: 0.9333333333333333\n","New set of weights found, iteration: 475 loss: 0.26944205 acc: 0.9333333333333333\n","New set of weights found, iteration: 477 loss: 0.268688 acc: 0.9366666666666666\n","New set of weights found, iteration: 479 loss: 0.26242334 acc: 0.9266666666666666\n","New set of weights found, iteration: 493 loss: 0.26207444 acc: 0.9333333333333333\n","New set of weights found, iteration: 495 loss: 0.25908068 acc: 0.93\n","New set of weights found, iteration: 496 loss: 0.2590734 acc: 0.93\n","New set of weights found, iteration: 497 loss: 0.2582146 acc: 0.94\n","New set of weights found, iteration: 503 loss: 0.25407296 acc: 0.93\n","New set of weights found, iteration: 505 loss: 0.25202662 acc: 0.9333333333333333\n","New set of weights found, iteration: 506 loss: 0.24973544 acc: 0.9366666666666666\n","New set of weights found, iteration: 512 loss: 0.24969201 acc: 0.93\n","New set of weights found, iteration: 517 loss: 0.24860601 acc: 0.9266666666666666\n","New set of weights found, iteration: 519 loss: 0.24686712 acc: 0.9266666666666666\n","New set of weights found, iteration: 529 loss: 0.24602742 acc: 0.9333333333333333\n","New set of weights found, iteration: 535 loss: 0.2445193 acc: 0.93\n","New set of weights found, iteration: 536 loss: 0.24081425 acc: 0.9333333333333333\n","New set of weights found, iteration: 538 loss: 0.24043368 acc: 0.93\n","New set of weights found, iteration: 546 loss: 0.23582341 acc: 0.9333333333333333\n","New set of weights found, iteration: 550 loss: 0.23467208 acc: 0.93\n","New set of weights found, iteration: 552 loss: 0.23393926 acc: 0.93\n","New set of weights found, iteration: 557 loss: 0.22943695 acc: 0.93\n","New set of weights found, iteration: 564 loss: 0.22614151 acc: 0.9266666666666666\n","New set of weights found, iteration: 570 loss: 0.22351934 acc: 0.93\n","New set of weights found, iteration: 582 loss: 0.2227324 acc: 0.93\n","New set of weights found, iteration: 585 loss: 0.21830775 acc: 0.93\n","New set of weights found, iteration: 597 loss: 0.2167703 acc: 0.93\n","New set of weights found, iteration: 610 loss: 0.21555844 acc: 0.9333333333333333\n","New set of weights found, iteration: 625 loss: 0.21515213 acc: 0.9366666666666666\n","New set of weights found, iteration: 629 loss: 0.21122937 acc: 0.9333333333333333\n","New set of weights found, iteration: 631 loss: 0.21094893 acc: 0.9266666666666666\n","New set of weights found, iteration: 637 loss: 0.21082413 acc: 0.9266666666666666\n","New set of weights found, iteration: 659 loss: 0.21066985 acc: 0.93\n","New set of weights found, iteration: 661 loss: 0.20929192 acc: 0.93\n","New set of weights found, iteration: 684 loss: 0.20894809 acc: 0.93\n","New set of weights found, iteration: 686 loss: 0.20748574 acc: 0.9333333333333333\n","New set of weights found, iteration: 689 loss: 0.205267 acc: 0.93\n","New set of weights found, iteration: 708 loss: 0.20465927 acc: 0.93\n","New set of weights found, iteration: 712 loss: 0.20393105 acc: 0.9266666666666666\n","New set of weights found, iteration: 729 loss: 0.20358147 acc: 0.9266666666666666\n","New set of weights found, iteration: 733 loss: 0.20317748 acc: 0.9266666666666666\n","New set of weights found, iteration: 739 loss: 0.20279907 acc: 0.94\n","New set of weights found, iteration: 740 loss: 0.20236613 acc: 0.9333333333333333\n","New set of weights found, iteration: 746 loss: 0.2021528 acc: 0.93\n","New set of weights found, iteration: 748 loss: 0.20100321 acc: 0.93\n","New set of weights found, iteration: 754 loss: 0.1993275 acc: 0.93\n","New set of weights found, iteration: 757 loss: 0.19792211 acc: 0.93\n","New set of weights found, iteration: 773 loss: 0.19783711 acc: 0.93\n","New set of weights found, iteration: 775 loss: 0.19740187 acc: 0.9333333333333333\n","New set of weights found, iteration: 776 loss: 0.19721994 acc: 0.9333333333333333\n","New set of weights found, iteration: 777 loss: 0.1961473 acc: 0.9333333333333333\n","New set of weights found, iteration: 779 loss: 0.19598241 acc: 0.9366666666666666\n","New set of weights found, iteration: 784 loss: 0.19526182 acc: 0.9333333333333333\n","New set of weights found, iteration: 785 loss: 0.19456321 acc: 0.9333333333333333\n","New set of weights found, iteration: 791 loss: 0.1943641 acc: 0.93\n","New set of weights found, iteration: 799 loss: 0.19334234 acc: 0.9366666666666666\n","New set of weights found, iteration: 806 loss: 0.19311096 acc: 0.9333333333333333\n","New set of weights found, iteration: 809 loss: 0.19277118 acc: 0.93\n","New set of weights found, iteration: 811 loss: 0.19264112 acc: 0.93\n","New set of weights found, iteration: 815 loss: 0.190967 acc: 0.93\n","New set of weights found, iteration: 890 loss: 0.18890005 acc: 0.9333333333333333\n","New set of weights found, iteration: 892 loss: 0.18846218 acc: 0.9333333333333333\n","New set of weights found, iteration: 893 loss: 0.18713883 acc: 0.9333333333333333\n","New set of weights found, iteration: 903 loss: 0.1869782 acc: 0.9333333333333333\n","New set of weights found, iteration: 909 loss: 0.18646298 acc: 0.9366666666666666\n","New set of weights found, iteration: 917 loss: 0.18598829 acc: 0.93\n","New set of weights found, iteration: 927 loss: 0.18594755 acc: 0.93\n","New set of weights found, iteration: 932 loss: 0.18573302 acc: 0.93\n","New set of weights found, iteration: 942 loss: 0.18538505 acc: 0.9333333333333333\n","New set of weights found, iteration: 946 loss: 0.18424016 acc: 0.9333333333333333\n","New set of weights found, iteration: 959 loss: 0.1835666 acc: 0.9333333333333333\n","New set of weights found, iteration: 969 loss: 0.1830834 acc: 0.9333333333333333\n","New set of weights found, iteration: 974 loss: 0.18286093 acc: 0.93\n","New set of weights found, iteration: 983 loss: 0.1820501 acc: 0.93\n","New set of weights found, iteration: 985 loss: 0.18183175 acc: 0.93\n","New set of weights found, iteration: 993 loss: 0.18173474 acc: 0.93\n","New set of weights found, iteration: 995 loss: 0.18133913 acc: 0.9266666666666666\n","New set of weights found, iteration: 1001 loss: 0.18080577 acc: 0.9266666666666666\n","New set of weights found, iteration: 1006 loss: 0.1802216 acc: 0.9333333333333333\n","New set of weights found, iteration: 1025 loss: 0.17995203 acc: 0.9333333333333333\n","New set of weights found, iteration: 1042 loss: 0.17973644 acc: 0.93\n","New set of weights found, iteration: 1061 loss: 0.17944387 acc: 0.9266666666666666\n","New set of weights found, iteration: 1082 loss: 0.17943431 acc: 0.93\n","New set of weights found, iteration: 1083 loss: 0.17871827 acc: 0.9266666666666666\n","New set of weights found, iteration: 1093 loss: 0.17833588 acc: 0.9333333333333333\n","New set of weights found, iteration: 1123 loss: 0.1782659 acc: 0.9333333333333333\n","New set of weights found, iteration: 1144 loss: 0.17753273 acc: 0.93\n","New set of weights found, iteration: 1154 loss: 0.17727007 acc: 0.93\n","New set of weights found, iteration: 1165 loss: 0.17724434 acc: 0.9333333333333333\n","New set of weights found, iteration: 1166 loss: 0.17719936 acc: 0.9333333333333333\n","New set of weights found, iteration: 1171 loss: 0.17672187 acc: 0.9366666666666666\n","New set of weights found, iteration: 1176 loss: 0.17671774 acc: 0.9333333333333333\n","New set of weights found, iteration: 1212 loss: 0.17666677 acc: 0.9333333333333333\n","New set of weights found, iteration: 1223 loss: 0.17643958 acc: 0.9333333333333333\n","New set of weights found, iteration: 1275 loss: 0.1762153 acc: 0.9333333333333333\n","New set of weights found, iteration: 1303 loss: 0.17542142 acc: 0.9333333333333333\n","New set of weights found, iteration: 1378 loss: 0.17535225 acc: 0.9333333333333333\n","New set of weights found, iteration: 1382 loss: 0.17529377 acc: 0.9333333333333333\n","New set of weights found, iteration: 1404 loss: 0.17457567 acc: 0.9333333333333333\n","New set of weights found, iteration: 1457 loss: 0.17447841 acc: 0.9333333333333333\n","New set of weights found, iteration: 1461 loss: 0.17424846 acc: 0.93\n","New set of weights found, iteration: 1477 loss: 0.1737377 acc: 0.9266666666666666\n","New set of weights found, iteration: 1548 loss: 0.17335981 acc: 0.9266666666666666\n","New set of weights found, iteration: 1580 loss: 0.1733058 acc: 0.9266666666666666\n","New set of weights found, iteration: 1587 loss: 0.17321306 acc: 0.93\n","New set of weights found, iteration: 1596 loss: 0.17308939 acc: 0.93\n","New set of weights found, iteration: 1614 loss: 0.17301595 acc: 0.9266666666666666\n","New set of weights found, iteration: 1644 loss: 0.17284796 acc: 0.9266666666666666\n","New set of weights found, iteration: 1647 loss: 0.17258313 acc: 0.9266666666666666\n","New set of weights found, iteration: 1662 loss: 0.1723816 acc: 0.93\n","New set of weights found, iteration: 1706 loss: 0.17223743 acc: 0.9266666666666666\n","New set of weights found, iteration: 1719 loss: 0.1719875 acc: 0.93\n","New set of weights found, iteration: 1978 loss: 0.17198084 acc: 0.9266666666666666\n","New set of weights found, iteration: 2001 loss: 0.17195481 acc: 0.93\n","New set of weights found, iteration: 2026 loss: 0.1717552 acc: 0.9266666666666666\n","New set of weights found, iteration: 2031 loss: 0.17165588 acc: 0.93\n","New set of weights found, iteration: 2066 loss: 0.17161626 acc: 0.9266666666666666\n","New set of weights found, iteration: 2074 loss: 0.17140518 acc: 0.93\n","New set of weights found, iteration: 2441 loss: 0.17138883 acc: 0.93\n","New set of weights found, iteration: 2636 loss: 0.17134853 acc: 0.9266666666666666\n","New set of weights found, iteration: 2718 loss: 0.17130204 acc: 0.9266666666666666\n","New set of weights found, iteration: 2775 loss: 0.17122428 acc: 0.93\n","New set of weights found, iteration: 2829 loss: 0.1711681 acc: 0.93\n","New set of weights found, iteration: 2874 loss: 0.17114341 acc: 0.93\n","New set of weights found, iteration: 2978 loss: 0.17100853 acc: 0.93\n","New set of weights found, iteration: 3138 loss: 0.17093514 acc: 0.9266666666666666\n","New set of weights found, iteration: 3293 loss: 0.17080545 acc: 0.9266666666666666\n","New set of weights found, iteration: 3486 loss: 0.1707664 acc: 0.93\n","New set of weights found, iteration: 3681 loss: 0.17070974 acc: 0.93\n","New set of weights found, iteration: 4038 loss: 0.17066137 acc: 0.93\n","New set of weights found, iteration: 4090 loss: 0.17065905 acc: 0.93\n","New set of weights found, iteration: 4116 loss: 0.17063397 acc: 0.93\n","New set of weights found, iteration: 4258 loss: 0.17062972 acc: 0.93\n","New set of weights found, iteration: 5960 loss: 0.17062148 acc: 0.93\n","New set of weights found, iteration: 6352 loss: 0.17058212 acc: 0.93\n","New set of weights found, iteration: 8192 loss: 0.17057395 acc: 0.93\n","New set of weights found, iteration: 8254 loss: 0.17056267 acc: 0.93\n","New set of weights found, iteration: 9463 loss: 0.17056097 acc: 0.93\n"]}],"source":["# Create dataset\n","X, y = vertical_data(samples=100, classes=3)\n","# Create model\n","dense1 = Layer_Dense(2, 3) # first dense layer, 2 inputs\n","activation1 = Activation_ReLU()\n","dense2 = Layer_Dense(3, 3) # second dense layer, 3 inputs, 3 outputs\n","activation2 = Activation_Softmax()\n","# Create loss function\n","loss_function = Loss_CategoricalCrossentropy()\n","# Helper variables\n","lowest_loss = 9999999 # some initial value\n","best_dense1_weights = dense1.weights.copy()\n","best_dense1_biases = dense1.biases.copy()\n","best_dense2_weights = dense2.weights.copy()\n","best_dense2_biases = dense2.biases.copy()\n","for iteration in range(10000):\n"," # Update weights with some small random values\n"," dense1.weights += 0.05 * np.random.randn(2, 3)\n"," dense1.biases += 0.05 * np.random.randn(1, 3)\n"," dense2.weights += 0.05 * np.random.randn(3, 3)\n"," dense2.biases += 0.05 * np.random.randn(1, 3)\n"," # Perform a forward pass of our training data through this layer\n"," dense1.forward(X)\n"," activation1.forward(dense1.output)\n"," dense2.forward(activation1.output)\n"," activation2.forward(dense2.output)\n"," # Perform a forward pass through activation function\n"," # it takes the output of second dense layer here and returns loss\n"," loss = loss_function.calculate(activation2.output, y)\n"," # Calculate accuracy from output of activation2 and targets\n"," # calculate values along first axis\n"," predictions = np.argmax(activation2.output, axis=1)\n"," accuracy = np.mean(predictions == y)\n"," # If loss is smaller - print and save weights and biases aside\n"," if loss < lowest_loss:\n"," print('New set of weights found, iteration:', iteration,'loss:', loss, 'acc:', accuracy)\n"," best_dense1_weights = dense1.weights.copy()\n"," best_dense1_biases = dense1.biases.copy()\n"," best_dense2_weights = dense2.weights.copy()\n"," best_dense2_biases = dense2.biases.copy()\n"," lowest_loss = loss\n"," # Revert weights and biases\n"," else:\n"," dense1.weights = best_dense1_weights.copy()\n"," dense1.biases = best_dense1_biases.copy()\n"," dense2.weights = best_dense2_weights.copy()\n"," dense2.biases = best_dense2_biases.copy()"]},{"cell_type":"markdown","metadata":{"id":"uCFESJdqludV"},"source":["
\n","STRATEGY 2: FOR SPIRAL DATASET - DOES NOT WORK!\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KI7k0Q8eludV","outputId":"48ff052b-e5af-4503-86d3-948c231d2a44"},"outputs":[{"name":"stdout","output_type":"stream","text":["New set of weights found, iteration: 0 loss: 1.0991902 acc: 0.3333333333333333\n","New set of weights found, iteration: 1 loss: 1.0988214 acc: 0.3333333333333333\n","New set of weights found, iteration: 6 loss: 1.0982754 acc: 0.3333333333333333\n","New set of weights found, iteration: 14 loss: 1.0978643 acc: 0.3333333333333333\n","New set of weights found, iteration: 23 loss: 1.0972557 acc: 0.35\n","New set of weights found, iteration: 37 loss: 1.0970367 acc: 0.35\n","New set of weights found, iteration: 40 loss: 1.0958394 acc: 0.37\n","New set of weights found, iteration: 41 loss: 1.0950066 acc: 0.4066666666666667\n","New set of weights found, iteration: 44 loss: 1.0948946 acc: 0.37333333333333335\n","New set of weights found, iteration: 53 loss: 1.0943341 acc: 0.3933333333333333\n","New set of weights found, iteration: 58 loss: 1.0942849 acc: 0.36666666666666664\n","New set of weights found, iteration: 59 loss: 1.0941792 acc: 0.35\n","New set of weights found, iteration: 60 loss: 1.0926698 acc: 0.38666666666666666\n","New set of weights found, iteration: 61 loss: 1.0913428 acc: 0.3933333333333333\n","New set of weights found, iteration: 63 loss: 1.0910325 acc: 0.4066666666666667\n","New set of weights found, iteration: 65 loss: 1.0902771 acc: 0.3933333333333333\n","New set of weights found, iteration: 75 loss: 1.0892566 acc: 0.39\n","New set of weights found, iteration: 88 loss: 1.0892477 acc: 0.39666666666666667\n","New set of weights found, iteration: 90 loss: 1.0862132 acc: 0.39\n","New set of weights found, iteration: 95 loss: 1.0858525 acc: 0.38333333333333336\n","New set of weights found, iteration: 99 loss: 1.0850619 acc: 0.44\n","New set of weights found, iteration: 103 loss: 1.0833515 acc: 0.4166666666666667\n","New set of weights found, iteration: 108 loss: 1.0818787 acc: 0.41333333333333333\n","New set of weights found, iteration: 111 loss: 1.0813941 acc: 0.39\n","New set of weights found, iteration: 113 loss: 1.0787892 acc: 0.38666666666666666\n","New set of weights found, iteration: 114 loss: 1.0777413 acc: 0.36333333333333334\n","New set of weights found, iteration: 116 loss: 1.0772293 acc: 0.38\n","New set of weights found, iteration: 121 loss: 1.0759072 acc: 0.3933333333333333\n","New set of weights found, iteration: 132 loss: 1.075869 acc: 0.43\n","New set of weights found, iteration: 134 loss: 1.075571 acc: 0.39666666666666667\n","New set of weights found, iteration: 143 loss: 1.0749155 acc: 0.4066666666666667\n","New set of weights found, iteration: 148 loss: 1.0747138 acc: 0.4066666666666667\n","New set of weights found, iteration: 156 loss: 1.0740647 acc: 0.42\n","New set of weights found, iteration: 183 loss: 1.0736305 acc: 0.42333333333333334\n","New set of weights found, iteration: 184 loss: 1.0735968 acc: 0.4266666666666667\n","New set of weights found, iteration: 196 loss: 1.0734725 acc: 0.4266666666666667\n","New set of weights found, iteration: 197 loss: 1.0726037 acc: 0.44\n","New set of weights found, iteration: 198 loss: 1.0724471 acc: 0.4533333333333333\n","New set of weights found, iteration: 213 loss: 1.0718489 acc: 0.38666666666666666\n","New set of weights found, iteration: 225 loss: 1.07182 acc: 0.4166666666666667\n","New set of weights found, iteration: 228 loss: 1.0711939 acc: 0.41\n","New set of weights found, iteration: 276 loss: 1.0709915 acc: 0.42\n","New set of weights found, iteration: 395 loss: 1.0707066 acc: 0.42333333333333334\n","New set of weights found, iteration: 471 loss: 1.070367 acc: 0.42\n","New set of weights found, iteration: 1317 loss: 1.0702449 acc: 0.43333333333333335\n","New set of weights found, iteration: 1857 loss: 1.0702258 acc: 0.43333333333333335\n","New set of weights found, iteration: 2198 loss: 1.070218 acc: 0.4266666666666667\n","New set of weights found, iteration: 2315 loss: 1.0701423 acc: 0.44333333333333336\n","New set of weights found, iteration: 5115 loss: 1.0700669 acc: 0.43333333333333335\n","New set of weights found, iteration: 5942 loss: 1.069947 acc: 0.44333333333333336\n"]}],"source":["# Create dataset\n","X, y = spiral_data(samples=100, classes=3)# Create model\n","dense1 = Layer_Dense(2, 3) # first dense layer, 2 inputs\n","activation1 = Activation_ReLU()\n","dense2 = Layer_Dense(3, 3) # second dense layer, 3 inputs, 3 outputs\n","activation2 = Activation_Softmax()\n","# Create loss function\n","loss_function = Loss_CategoricalCrossentropy()\n","# Helper variables\n","lowest_loss = 9999999 # some initial value\n","best_dense1_weights = dense1.weights.copy()\n","best_dense1_biases = dense1.biases.copy()\n","best_dense2_weights = dense2.weights.copy()\n","best_dense2_biases = dense2.biases.copy()\n","for iteration in range(10000):\n"," # Update weights with some small random values\n"," dense1.weights += 0.05 * np.random.randn(2, 3)\n"," dense1.biases += 0.05 * np.random.randn(1, 3)\n"," dense2.weights += 0.05 * np.random.randn(3, 3)\n"," dense2.biases += 0.05 * np.random.randn(1, 3)\n"," # Perform a forward pass of our training data through this layer\n"," dense1.forward(X)\n"," activation1.forward(dense1.output)\n"," dense2.forward(activation1.output)\n"," activation2.forward(dense2.output)\n"," # Perform a forward pass through activation function\n"," # it takes the output of second dense layer here and returns loss\n"," loss = loss_function.calculate(activation2.output, y)\n"," # Calculate accuracy from output of activation2 and targets\n"," # calculate values along first axis\n"," predictions = np.argmax(activation2.output, axis=1)\n"," accuracy = np.mean(predictions == y)\n"," # If loss is smaller - print and save weights and biases aside\n"," if loss < lowest_loss:\n"," print('New set of weights found, iteration:', iteration,'loss:', loss, 'acc:', accuracy)\n"," best_dense1_weights = dense1.weights.copy()\n"," best_dense1_biases = dense1.biases.copy()\n"," best_dense2_weights = dense2.weights.copy()\n"," best_dense2_biases = dense2.biases.copy()\n"," lowest_loss = loss\n"," # Revert weights and biases\n"," else:\n"," dense1.weights = best_dense1_weights.copy()\n"," dense1.biases = best_dense1_biases.copy()\n"," dense2.weights = best_dense2_weights.copy()\n"," dense2.biases = best_dense2_biases.copy()"]},{"cell_type":"markdown","metadata":{"id":"g4BJeD9_ludV"},"source":["
\n","GRADIENTS OF THE LOSS WITH RESPECT TO WEIGHTS\n","
"]},{"cell_type":"markdown","metadata":{"id":"ffLt0i83ludV"},"source":[""]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mE4OMy6vludV","outputId":"678d3940-ad48-4b68-bf78-b78f57c11006"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[ 0.5 0.5 0.5]\n"," [20.1 20.1 20.1]\n"," [10.9 10.9 10.9]\n"," [ 4.1 4.1 4.1]]\n"]}],"source":["import numpy as np\n","# Passed-in gradient from the next layer\n","# for the purpose of this example we're going to use\n","# an array of an incremental gradient values\n","dvalues = np.array([[1., 1., 1.],\n"," [2., 2., 2.],\n"," [3., 3., 3.]])\n","# We have 3 sets of inputs - samples\n","inputs = np.array([[1, 2, 3, 2.5],\n"," [2., 5., -1., 2],\n"," [-1.5, 2.7, 3.3, -0.8]])\n","# sum weights of given input\n","# and multiply by the passed-in gradient for this neuron\n","dweights = np.dot(inputs.T, dvalues)\n","print(dweights)"]},{"cell_type":"markdown","metadata":{"id":"bws-msQQludW"},"source":["
\n","GRADIENTS OF THE LOSS WITH RESPECT TO BIASES\n","
"]},{"cell_type":"markdown","metadata":{"id":"tmZYpVReludW"},"source":[""]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eyqttZ-wludW","outputId":"d3952352-87cd-4ee1-a2a6-00c71705bf33"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[6. 6. 6.]]\n"]}],"source":["import numpy as np\n","# Passed-in gradient from the next layer\n","# for the purpose of this example we're going to use\n","# an array of an incremental gradient values\n","dvalues = np.array([[1., 1., 1.],\n"," [2., 2., 2.],\n"," [3., 3., 3.]])\n","# One bias for each neuron\n","# biases are the row vector with a shape (1, neurons)\n","biases = np.array([[2, 3, 0.5]])\n","# dbiases - sum values, do this over samples (first axis), keepdims\n","# since this by default will produce a plain list -\n","# we explained this in the chapter 4\n","dbiases = np.sum(dvalues, axis=0, keepdims=True)\n","print(dbiases)"]},{"cell_type":"markdown","metadata":{"id":"a0t9YbEAludW"},"source":["
\n","GRADIENTS OF THE LOSS WITH RESPECT TO INPUTS\n","
"]},{"cell_type":"markdown","metadata":{"id":"iwj9qpG1ludW"},"source":[""]},{"cell_type":"code","execution_count":null,"metadata":{"id":"u_ry_Y-VludW","outputId":"08a4236b-cc1f-494a-d77c-3ff715bc6a37"},"outputs":[{"name":"stdout","output_type":"stream","text":["[[ 0.44 -0.38 -0.07 1.37]\n"," [ 0.88 -0.76 -0.14 2.74]\n"," [ 1.32 -1.14 -0.21 4.11]]\n"]}],"source":["import numpy as np\n","# Passed-in gradient from the next layer\n","# for the purpose of this example we're going to use\n","# an array of an incremental gradient values\n","dvalues = np.array([[1., 1., 1.],\n"," [2., 2., 2.],\n"," [3., 3., 3.]])\n","# We have 3 sets of weights - one set for each neuron\n","# we have 4 inputs, thus 4 weights\n","# recall that we keep weights transposed\n","weights = np.array([[0.2, 0.8, -0.5, 1],\n"," [0.5, -0.91, 0.26, -0.5],\n"," [-0.26, -0.27, 0.17, 0.87]]).T\n","# sum weights of given input\n","# and multiply by the passed-in gradient for this neuron\n","dinputs = np.dot(dvalues, weights.T)\n","print(dinputs)"]},{"cell_type":"markdown","metadata":{"id":"vVjxhrTLludX"},"source":["
\n","ADDING THE \"BACKWARD\" METHOD IN THE LAYER-DENSE CLASS\n","
\n","ADDING THE \"BACKWARD\" METHOD IN THE RELU ACTIVATION CLASS\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"xO4OWMfUludX"},"outputs":[],"source":["# # ReLU activation\n","# class Activation_ReLU:\n","# # Forward pass\n","# def forward(self, inputs):\n","# # Remember input values\n","# self.inputs = inputs\n","# self.output = np.maximum(0, inputs)\n","# # Backward pass\n","# def backward(self, dvalues):\n","# # Since we need to modify the original variable,\n","# # let's make a copy of the values first\n","# self.dinputs = dvalues.copy()\n","# # Zero gradient where input values were negative\n","# self.dinputs[self.inputs <= 0] = 0"]},{"cell_type":"markdown","metadata":{"id":"VckWYcrrludX"},"source":["
\n","LOSS FUNCTION BACKPROPAGATION\n","
"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"H8NF4KBbludX"},"outputs":[],"source":["# Cross-entropy loss\n","class Loss_CategoricalCrossentropy(Loss):\n"," ...\n"," # Backward pass\n"," def backward(self, dvalues, y_true):\n"," # Number of samples\n"," samples = len(dvalues)\n"," # Number of labels in every sample\n"," # We'll use the first sample to count them\n"," labels = len(dvalues[0])\n"," # If labels are sparse, turn them into one-hot vector\n"," if len(y_true.shape) == 1:\n"," y_true = np.eye(labels)[y_true]\n"," # Calculate gradient\n"," self.dinputs = -y_true / dvalues\n"," # Normalize gradient\n"," self.dinputs = self.dinputs / samples"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Sfh0r4WuludX"},"outputs":[],"source":[]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.12.2"},"colab":{"provenance":[]}},"nbformat":4,"nbformat_minor":0}