Neuron with 3 inputs¶
In [4]:
inputs = [1, 2, 3]
weights = [0.2, 0.8, -0.5]
bias = 2
output = (inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + bias)
print(f"Output: {output}")
Output: 2.3
Neuron with 4 inputs¶
In [5]:
inputs = [1.0, 2.0, 3.0, 2.5]
weights = [0.2, 0.8, -0.5, 1.0]
bias = 2
output = (inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + inputs[3]*weights[3] + bias)
print(output)
Output: 4.8
Layer of 3 neurons with 4 inputs¶
In [1]:
num_neurons = 3
num_inputs = 4
inputs = [1.0, 2.0, 3.0, 2.5]
weights = [[0.2, 0.8, -0.5, 1.0],
[0.5, -0.91, 0.26, -0.5],
[-0.26, -0.27, 0.17, 0.87]]
biases = [2, 3, 0.5]
outputs = []
for i in range(num_neurons):
output = 0
for j in range(num_inputs):
output += inputs[j]*weights[i][j]
output += biases[i]
outputs.append(output)
print(outputs)
[4.8, 1.21, 2.385]
Layer of 3 neurons with 4 inputs¶
In [2]:
num_neurons = 3
num_inputs = 4
inputs = [1.0, 2.0, 3.0, 2.5]
weights = [[0.2, 0.8, -0.5, 1.0],
[0.5, -0.91, 0.26, -0.5],
[-0.26, -0.27, 0.17, 0.87]]
biases = [2, 3, 0.5]
outputs = []
for neuron_weights, neuron_bias in zip(weights, biases):
neuron_output = 0
for input, weight in zip(inputs, neuron_weights):
neuron_output += input*weight
neuron_output += neuron_bias
outputs.append(neuron_output)
print(outputs)
[4.8, 1.21, 2.385]
Single Neuron using Numpy¶
In [6]:
import numpy as np
inputs = [1.0, 2.0, 3.0, 2.5]
weights = [0.2, 0.8, -0.5, 1.0]
bias = 2
output = np.dot(inputs, weights) + bias
print(output)
4.8