{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Neuron with 3 inputs" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output: 2.3\n" ] } ], "source": [ "inputs = [1, 2, 3]\n", "weights = [0.2, 0.8, -0.5]\n", "bias = 2\n", "\n", "output = (inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + bias)\n", "\n", "print(f\"Output: {output}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Neuron with 4 inputs" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output: 4.8\n" ] } ], "source": [ "inputs = [1.0, 2.0, 3.0, 2.5]\n", "weights = [0.2, 0.8, -0.5, 1.0]\n", "bias = 2\n", "\n", "output = (inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + inputs[3]*weights[3] + bias)\n", "\n", "print(output)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Layer of 3 neurons with 4 inputs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4.8, 1.21, 2.385]\n" ] } ], "source": [ "num_neurons = 3\n", "num_inputs = 4\n", "inputs = [1.0, 2.0, 3.0, 2.5]\n", "weights = [[0.2, 0.8, -0.5, 1.0],\n", " [0.5, -0.91, 0.26, -0.5],\n", " [-0.26, -0.27, 0.17, 0.87]]\n", "biases = [2, 3, 0.5]\n", "\n", "outputs = []\n", "for i in range(num_neurons):\n", " output = 0\n", " for j in range(num_inputs):\n", " output += inputs[j]*weights[i][j]\n", " output += biases[i]\n", " outputs.append(output)\n", "\n", "print(outputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Layer of 3 neurons with 4 inputs" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4.8, 1.21, 2.385]\n" ] } ], "source": [ "num_neurons = 3\n", "num_inputs = 4\n", "inputs = [1.0, 2.0, 3.0, 2.5]\n", "weights = [[0.2, 0.8, -0.5, 1.0],\n", " [0.5, -0.91, 0.26, -0.5],\n", " [-0.26, -0.27, 0.17, 0.87]]\n", "biases = [2, 3, 0.5]\n", "\n", "outputs = []\n", "for neuron_weights, neuron_bias in zip(weights, biases):\n", " neuron_output = 0\n", " for input, weight in zip(inputs, neuron_weights):\n", " neuron_output += input*weight\n", " neuron_output += neuron_bias\n", " outputs.append(neuron_output)\n", "\n", "print(outputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Single Neuron using Numpy" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.8\n" ] } ], "source": [ "import numpy as np\n", "\n", "inputs = [1.0, 2.0, 3.0, 2.5]\n", "weights = [0.2, 0.8, -0.5, 1.0]\n", "bias = 2\n", "\n", "output = np.dot(inputs, weights) + bias\n", "print(output)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Layer of Neurons Using Numpy" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4.8 1.21 2.385]\n", "[4.8 1.21 2.385]\n" ] } ], "source": [ "import numpy as np\n", "\n", "inputs = [1.0, 2.0, 3.0, 2.5]\n", "weights = np.array([\n", " [0.2, 0.8, -0.5, 1],\n", " [0.5, -0.91, 0.26, -0.5],\n", " [-0.26, -0.27, 0.17, 0.87]\n", "])\n", "biases = [2.0, 3.0, 0.5]\n", "\n", "layer_outputs = np.dot(weights, inputs) + biases\n", "# must be dot(weights, inputs), not dot(inputs, weights)\n", "# this takes the dot each row of the weights by the column of inputs (remember the second term is transposed)\n", "print(layer_outputs)\n", "\n", "layer_outputs_2 = np.dot(inputs, weights.T) + biases\n", "# this takes each input and multiplies by the weight. also correct.\n", "print(layer_outputs_2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Layer of Neurons and Batch of Data Using Numpy\n", "Batch of data is simply a set of inputs." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 4.8 1.21 2.385]\n", " [ 8.9 -1.81 0.2 ]\n", " [ 1.41 1.051 0.026]]\n" ] } ], "source": [ "import numpy as np\n", "\n", "inputs = [ # Batch of inputs\n", " [1.0, 2.0, 3.0, 2.5], \n", " [2.0, 5.0, -1.0, 2.0], \n", " [-1.5, 2.7, 3.3, -0.8]\n", "]\n", "weights = np.array([\n", " [0.2, 0.8, -0.5, 1],\n", " [0.5, -0.91, 0.26, -0.5],\n", " [-0.26, -0.27, 0.17, 0.87]\n", "])\n", "biases = [2.0, 3.0, 0.5]\n", "\n", "outputs = np.dot(inputs, weights.T) + biases\n", "# For every row of inputs, compute the dot of input set and weights\n", "print(outputs)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }