Lecture 13
This commit is contained in:
parent
741460a482
commit
5de460e8d0
@ -2,29 +2,29 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Iteration 0, Loss: 466.56000000000006\n",
|
||||
"Iteration 20, Loss: 5.32959636083938\n",
|
||||
"Iteration 40, Loss: 0.41191523404899866\n",
|
||||
"Iteration 60, Loss: 0.031836212079467595\n",
|
||||
"Iteration 80, Loss: 0.002460565465389601\n",
|
||||
"Iteration 100, Loss: 0.000190172825660145\n",
|
||||
"Iteration 120, Loss: 1.4698126966451542e-05\n",
|
||||
"Iteration 140, Loss: 1.1359926717815175e-06\n",
|
||||
"Iteration 160, Loss: 8.779889800154524e-08\n",
|
||||
"Iteration 180, Loss: 6.7858241357822796e-09\n",
|
||||
"Iteration 0, Loss: 0.0\n",
|
||||
"Iteration 20, Loss: 0.0\n",
|
||||
"Iteration 40, Loss: 0.0\n",
|
||||
"Iteration 60, Loss: 0.0\n",
|
||||
"Iteration 80, Loss: 0.0\n",
|
||||
"Iteration 100, Loss: 0.0\n",
|
||||
"Iteration 120, Loss: 0.0\n",
|
||||
"Iteration 140, Loss: 0.0\n",
|
||||
"Iteration 160, Loss: 0.0\n",
|
||||
"Iteration 180, Loss: 0.0\n",
|
||||
"Final weights:\n",
|
||||
" [[-0.00698895 -0.01397789 -0.02096684 -0.02795579]\n",
|
||||
" [ 0.25975286 0.11950572 -0.02074143 -0.16098857]\n",
|
||||
" [ 0.53548461 0.27096922 0.00645383 -0.25806156]]\n",
|
||||
" [[0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 0.]\n",
|
||||
" [0. 0. 0. 0.]]\n",
|
||||
"Final biases:\n",
|
||||
" [-0.00698895 -0.04024714 -0.06451539]\n"
|
||||
" [0. 0. 0.]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -114,7 +114,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@ -368,6 +368,99 @@
|
||||
"source": [
|
||||
"# Backpropagation of a Layer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Iteration 0, Loss: 466.56000000000006\n",
|
||||
"Iteration 20, Loss: 5.329595763793193\n",
|
||||
"Iteration 40, Loss: 0.41191524253483786\n",
|
||||
"Iteration 60, Loss: 0.03183621475376345\n",
|
||||
"Iteration 80, Loss: 0.002460565405431671\n",
|
||||
"Iteration 100, Loss: 0.0001901729121621426\n",
|
||||
"Iteration 120, Loss: 1.4698120139337557e-05\n",
|
||||
"Iteration 140, Loss: 1.1359948840900371e-06\n",
|
||||
"Iteration 160, Loss: 8.779778427447647e-08\n",
|
||||
"Iteration 180, Loss: 6.785903626216421e-09\n",
|
||||
"Final weights:\n",
|
||||
" [[-0.00698895 -0.0139779 -0.02096685 -0.0279558 ]\n",
|
||||
" [ 0.25975286 0.11950571 -0.02074143 -0.16098857]\n",
|
||||
" [ 0.53548461 0.27096922 0.00645383 -0.25806156]]\n",
|
||||
"Final biases:\n",
|
||||
" [-0.00698895 -0.04024714 -0.06451539]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Initial inputs\n",
|
||||
"inputs = np.array([1, 2, 3, 4])\n",
|
||||
"\n",
|
||||
"# Initial weights and biases\n",
|
||||
"weights = np.array([\n",
|
||||
" [0.1, 0.2, 0.3, 0.4],\n",
|
||||
" [0.5, 0.6, 0.7, 0.8],\n",
|
||||
" [0.9, 1.0, 1.1, 1.2]\n",
|
||||
"])\n",
|
||||
"\n",
|
||||
"biases = np.array([0.1, 0.2, 0.3])\n",
|
||||
"\n",
|
||||
"learning_rate = 0.001\n",
|
||||
"\n",
|
||||
"# Add the derivative function to the ReLU class\n",
|
||||
"class Activation_ReLU:\n",
|
||||
" def forward(self, inputs):\n",
|
||||
" return np.maximum(0, inputs)\n",
|
||||
" \n",
|
||||
" def derivative(self, inputs):\n",
|
||||
" return np.where(inputs > 0, 1, 0)\n",
|
||||
" \n",
|
||||
"relu = Activation_ReLU()\n",
|
||||
"\n",
|
||||
"num_iterations = 200\n",
|
||||
"\n",
|
||||
"# Training loop\n",
|
||||
"# A single layer of 3 neurons, each with 4 inputs\n",
|
||||
"# The neuron layer is then fed into a ReLU activation layer\n",
|
||||
"for iteration in range(num_iterations):\n",
|
||||
" # Forward pass\n",
|
||||
" neuron_outputs = np.dot(weights, inputs) + biases\n",
|
||||
" relu_outputs = relu.forward(neuron_outputs)\n",
|
||||
" \n",
|
||||
" # Calculate the squared loss assuming the desired output is a sum of 0. Trivial but just an example\n",
|
||||
" final_output = np.sum(relu_outputs)\n",
|
||||
" loss = final_output**2\n",
|
||||
"\n",
|
||||
" # Backward pass\n",
|
||||
" dL_dfinal_output = 2 * final_output\n",
|
||||
" dfinal_output_drelu_output = np.ones_like(relu_outputs)\n",
|
||||
" drelu_output_dneuron_output = relu.derivative(neuron_outputs)\n",
|
||||
"\n",
|
||||
" dL_dneuron_output = dL_dfinal_output * dfinal_output_drelu_output * drelu_output_dneuron_output\n",
|
||||
"\n",
|
||||
" # Get the gradient of the Loss with respect to the weights and biases\n",
|
||||
" dL_dW = np.outer(dL_dneuron_output, inputs)\n",
|
||||
" dL_db = dL_dneuron_output\n",
|
||||
"\n",
|
||||
" # Update the weights and biases\n",
|
||||
" weights -= learning_rate * dL_dW\n",
|
||||
" biases -= learning_rate * dL_db\n",
|
||||
"\n",
|
||||
" # Print the loss every 20 iterations\n",
|
||||
" if iteration % 20 == 0:\n",
|
||||
" print(f\"Iteration {iteration}, Loss: {loss}\")\n",
|
||||
"\n",
|
||||
"# Final weights and biases\n",
|
||||
"print(\"Final weights:\\n\", weights)\n",
|
||||
"print(\"Final biases:\\n\", biases)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user