Inverted-Pendulum-Neural-Ne.../analysis/controller_across_epochs.py

136 lines
4.4 KiB
Python

import os
import numpy as np
import torch
import torch.nn as nn
import matplotlib
matplotlib.use("Agg") # Use non-interactive backend
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import multiprocessing
# Define PendulumController class
class PendulumController(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(4, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x):
return self.net(x)
# ODE solver (RK4 method)
def pendulum_ode_step(state, dt, desired_theta, controller):
theta, omega, alpha = state
def compute_torque(th, om, al):
inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp)
torque = torch.clamp(torque, -250, 250)
return float(torque)
def derivatives(state, torque):
th, om, al = state
a = (g / R) * np.sin(th) + torque / (m * R**2)
return np.array([om, a, 0]) # dtheta, domega, dalpha
# Compute RK4 steps
torque1 = compute_torque(theta, omega, alpha)
k1 = dt * derivatives(state, torque1)
state_k2 = state + 0.5 * k1
torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2])
k2 = dt * derivatives(state_k2, torque2)
state_k3 = state + 0.5 * k2
torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2])
k3 = dt * derivatives(state_k3, torque3)
state_k4 = state + k3
torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2])
k4 = dt * derivatives(state_k4, torque4)
new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0
return new_state
# Constants
g = 9.81 # Gravity
R = 1.0 # Length of the pendulum
m = 1.0 # Mass
dt = 0.02 # Time step
num_steps = 500 # Simulation time steps
# Directory containing controller files
controller_dir = "/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/no_time_weight/controllers"
controller_files = sorted([f for f in os.listdir(controller_dir) if f.startswith("controller_") and f.endswith(".pth")])
# Sorting controllers by epoch
controller_epochs = [int(f.split('_')[1].split('.')[0]) for f in controller_files]
sorted_controllers = [x for _, x in sorted(zip(controller_epochs, controller_files))]
# **Granularity Control: Select every Nth controller**
N = 5 # Change this value to adjust granularity (e.g., every 5th controller)
selected_controllers = sorted_controllers[::N] # Take every Nth controller
# Initial condition
theta0, omega0, alpha0, desired_theta = (-np.pi, -np.pi, 0.0, np.pi / 6) # Example initial condition
# Function to run a single controller simulation (for multiprocessing)
def run_simulation(controller_file):
epoch = int(controller_file.split('_')[1].split('.')[0])
# Load controller
controller = PendulumController()
controller.load_state_dict(torch.load(os.path.join(controller_dir, controller_file)))
controller.eval()
# Run simulation
state = np.array([theta0, omega0, alpha0])
theta_vals = []
for _ in range(num_steps):
theta_vals.append(state[0])
state = pendulum_ode_step(state, dt, desired_theta, controller)
return epoch, theta_vals
# Parallel processing
if __name__ == "__main__":
num_workers = min(multiprocessing.cpu_count(), 16) # Limit to 16 workers max
print(f"Using {num_workers} parallel workers...")
print(f"Processing every {N}th controller, total controllers used: {len(selected_controllers)}")
with multiprocessing.Pool(processes=num_workers) as pool:
results = pool.map(run_simulation, selected_controllers)
# Sort results by epoch
results.sort(key=lambda x: x[0])
epochs, theta_over_epochs = zip(*results)
# Convert results to NumPy arrays
theta_over_epochs = np.array(theta_over_epochs)
# Create 3D plot
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
# Meshgrid for 3D plotting
E, T = np.meshgrid(epochs, np.arange(num_steps) * dt)
# Plot surface
ax.plot_surface(E, T, theta_over_epochs.T, cmap="viridis")
# Labels
ax.set_xlabel("Epoch")
ax.set_ylabel("Time (s)")
ax.set_zlabel("Theta (rad)")
ax.set_title(f"Pendulum Angle Evolution Over Training Epochs (Granularity N={N})")
plt.savefig("pendulum_plot.png", dpi=1000, bbox_inches="tight")
print("Saved plot as 'pendulum_plot.png'.")