150 lines
5.4 KiB
Python
150 lines
5.4 KiB
Python
import os
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
from multiprocessing import Pool, cpu_count
|
|
|
|
# Define PendulumController class
|
|
from PendulumController import PendulumController
|
|
|
|
# ODE solver (RK4 method)
|
|
def pendulum_ode_step(state, dt, desired_theta, controller):
|
|
theta, omega, alpha = state
|
|
|
|
def compute_torque(th, om, al):
|
|
inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32)
|
|
with torch.no_grad():
|
|
torque = controller(inp)
|
|
torque = torch.clamp(torque, -250, 250)
|
|
return float(torque)
|
|
|
|
def derivatives(state, torque):
|
|
th, om, al = state
|
|
a = (g / R) * np.sin(th) + torque / (m * R**2)
|
|
return np.array([om, a, 0]) # dtheta, domega, dalpha
|
|
|
|
# Compute RK4 steps
|
|
torque1 = compute_torque(theta, omega, alpha)
|
|
k1 = dt * derivatives(state, torque1)
|
|
|
|
state_k2 = state + 0.5 * k1
|
|
torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2])
|
|
k2 = dt * derivatives(state_k2, torque2)
|
|
|
|
state_k3 = state + 0.5 * k2
|
|
torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2])
|
|
k3 = dt * derivatives(state_k3, torque3)
|
|
|
|
state_k4 = state + k3
|
|
torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2])
|
|
k4 = dt * derivatives(state_k4, torque4)
|
|
|
|
new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0
|
|
return new_state
|
|
|
|
# Constants
|
|
g = 9.81 # Gravity
|
|
R = 1.0 # Length of the pendulum
|
|
m = 10.0 # Mass
|
|
dt = 0.02 # Time step
|
|
num_steps = 500 # Simulation time steps
|
|
|
|
# Directory containing controller files
|
|
loss_function = "quadratic"
|
|
controller_dir = f"/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/normalized/training/{loss_function}/controllers"
|
|
#controller_dir = f"C:/Users/Judson/Desktop/New Gitea/Neural-Networks-in-GNC/inverted_pendulum/training/{loss_function}/controllers"
|
|
controller_files = sorted([f for f in os.listdir(controller_dir) if f.startswith("controller_") and f.endswith(".pth")])
|
|
|
|
# Sorting controllers by epoch
|
|
controller_epochs = [int(f.split('_')[1].split('.')[0]) for f in controller_files]
|
|
sorted_controllers = [x for _, x in sorted(zip(controller_epochs, controller_files))]
|
|
|
|
# **Epoch Range Selection**
|
|
epoch_range = (0, 1000) # Set your desired range (e.g., (0, 5000) or (0, 100))
|
|
|
|
filtered_controllers = [
|
|
f for f in sorted_controllers
|
|
if epoch_range[0] <= int(f.split('_')[1].split('.')[0]) <= epoch_range[1]
|
|
]
|
|
|
|
# **Granularity Control: Select every Nth controller**
|
|
N = 1 # Change this value to adjust granularity (e.g., every 5th controller)
|
|
selected_controllers = filtered_controllers[::N] # Take every Nth controller within the range
|
|
|
|
# Initial condition
|
|
# theta0, omega0, alpha0, desired_theta = (-np.pi, -2*np.pi, 0.0, -1.3*np.pi) # Example initial condition
|
|
theta0, omega0, alpha0, desired_theta = (-np.pi, 0.0, 0.0, 0.0) # Example initial condition
|
|
|
|
# Parallel function must return epoch explicitly
|
|
def run_simulation(controller_file):
|
|
epoch = int(controller_file.split('_')[1].split('.')[0])
|
|
|
|
# Load controller
|
|
controller = PendulumController()
|
|
controller.load_state_dict(torch.load(os.path.join(controller_dir, controller_file)))
|
|
controller.eval()
|
|
|
|
# Run simulation
|
|
state = np.array([theta0, omega0, alpha0])
|
|
theta_vals = []
|
|
|
|
for _ in range(num_steps):
|
|
theta_vals.append(state[0])
|
|
state = pendulum_ode_step(state, dt, desired_theta, controller)
|
|
|
|
return epoch, theta_vals # Return epoch with data
|
|
|
|
# Parallel processing
|
|
if __name__ == "__main__":
|
|
num_workers = min(cpu_count(), 16) # Limit to 16 workers max
|
|
print(f"Using {num_workers} parallel workers...")
|
|
|
|
with Pool(processes=num_workers) as pool:
|
|
results = pool.map(run_simulation, selected_controllers)
|
|
|
|
# Sort results by epoch to ensure correct order
|
|
results.sort(key=lambda x: x[0])
|
|
epochs, theta_over_epochs = zip(*results) # Unzip sorted results
|
|
|
|
# Convert results to NumPy arrays
|
|
theta_over_epochs = np.array(theta_over_epochs)
|
|
|
|
# Create 3D line plot
|
|
fig = plt.figure(figsize=(10, 7))
|
|
ax = fig.add_subplot(111, projection='3d')
|
|
|
|
time_steps = np.arange(num_steps) * dt # X-axis (time)
|
|
|
|
# Plot each controller as a separate line
|
|
for epoch, theta_vals in zip(epochs, theta_over_epochs):
|
|
ax.plot(
|
|
[epoch] * len(time_steps), # Y-axis (epoch stays constant for each line)
|
|
time_steps, # X-axis (time)
|
|
theta_vals, # Z-axis (theta evolution)
|
|
label=f"Epoch {epoch}" if epoch % (N * 10) == 0 else "", # Label some lines for clarity
|
|
)
|
|
|
|
# Labels
|
|
ax.set_xlabel("Epoch")
|
|
ax.set_ylabel("Time (s)")
|
|
ax.set_zlabel("Theta (rad)")
|
|
ax.set_title(f"Pendulum Angle Evolution for {loss_function}")
|
|
|
|
# Add a horizontal line at desired_theta across all epochs and time steps
|
|
epochs_array = np.array([epoch for epoch, _ in zip(epochs, theta_over_epochs)])
|
|
ax.plot(
|
|
epochs_array, # X-axis spanning all epochs
|
|
[time_steps.max()] * len(epochs_array), # Y-axis at the maximum time step
|
|
[desired_theta] * len(epochs_array), # Constant Z-axis value of desired_theta
|
|
color='r', linestyle='--', linewidth=2, label='Desired Theta at End Time'
|
|
)
|
|
|
|
# Improve visibility
|
|
ax.view_init(elev=20, azim=-135) # Adjust 3D perspective
|
|
|
|
plt.savefig(f"{loss_function}.png", dpi=600)
|
|
#plt.show()
|
|
print(f"Saved plot as '{loss_function}.png'.")
|