112 lines
4.5 KiB
Python
112 lines
4.5 KiB
Python
import torch
|
|
import torch.optim as optim
|
|
from torchdiffeq import odeint
|
|
import os
|
|
import shutil
|
|
import csv
|
|
import inspect
|
|
import math # needed for math.pi in normalized_loss
|
|
|
|
from PendulumController import PendulumController
|
|
from PendulumDynamics import PendulumDynamics
|
|
from initial_conditions import initial_conditions
|
|
from base_loss_functions import base_loss_functions, normalized_loss # Import both
|
|
|
|
# Device setup
|
|
device = torch.device("cpu")
|
|
base_controller_path = "/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/controller_base.pth"
|
|
|
|
# Initial conditions (theta0, omega0, alpha0, desired_theta)
|
|
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
|
|
|
# Pendulum constants
|
|
m = 10.0
|
|
g = 9.81
|
|
R = 1.0
|
|
|
|
# Time grid settings
|
|
t_start, t_end, t_points = 0, 10, 1000
|
|
t_span = torch.linspace(t_start, t_end, t_points, device=device)
|
|
|
|
# Directory for storing results
|
|
output_dir = "base_loss"
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
# Constant learning rate and weight decay
|
|
learning_rate = 1e-1
|
|
weight_decay = 1e-4
|
|
|
|
# Training parameters
|
|
num_epochs = 1000
|
|
|
|
# Iterate over the base loss functions.
|
|
# Each entry in base_loss_functions is a tuple: (exponent, loss_fn)
|
|
for name, (exponent, loss_fn) in base_loss_functions.items():
|
|
|
|
# Create a wrapper loss function that applies the base loss function
|
|
# to the extracted theta and desired_theta from the state trajectory,
|
|
# and then reduces it to a scalar.
|
|
def current_loss_fn(state_traj):
|
|
theta = state_traj[:, :, 0] # [batch_size, t_points]
|
|
desired_theta = state_traj[:, :, 3] # [batch_size, t_points]
|
|
return torch.mean(loss_fn(theta, desired_theta))
|
|
|
|
# Initialize the controller and load the base parameters.
|
|
controller = PendulumController().to(device)
|
|
controller.load_state_dict(torch.load(base_controller_path))
|
|
pendulum_dynamics = PendulumDynamics(controller, m, R, g).to(device)
|
|
print(f"Loaded base controller from {base_controller_path} for loss '{name}' (exponent {exponent})")
|
|
|
|
# Use constant learning rate and weight decay.
|
|
optimizer = optim.Adam(controller.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
|
|
|
# Set up directories for saving models and logs for this loss function.
|
|
function_output_dir = os.path.join(output_dir, name)
|
|
controllers_dir = os.path.join(function_output_dir, "controllers")
|
|
if os.path.exists(controllers_dir):
|
|
shutil.rmtree(controllers_dir)
|
|
os.makedirs(controllers_dir, exist_ok=True)
|
|
|
|
config_file = os.path.join(function_output_dir, "training_config.txt")
|
|
log_file = os.path.join(function_output_dir, "training_log.csv")
|
|
|
|
# Save configuration details including normalization details and source code.
|
|
with open(config_file, "w") as f:
|
|
f.write(f"Base controller path: {base_controller_path}\n")
|
|
f.write(f"Time Span: {t_start} to {t_end}, Points: {t_points}\n")
|
|
f.write(f"Learning Rate: {learning_rate}\n")
|
|
f.write(f"Weight Decay: {weight_decay}\n")
|
|
f.write(f"\nLoss Function Name: {name}\n")
|
|
f.write(f"Loss Function Exponent: {exponent}\n")
|
|
f.write("\nCurrent Loss Function (wrapper) Source Code:\n")
|
|
f.write(inspect.getsource(current_loss_fn))
|
|
f.write("\nSpecific Loss Function Source Code:\n")
|
|
f.write(inspect.getsource(loss_fn))
|
|
f.write("\nNormalized Loss Function Source Code:\n")
|
|
f.write(inspect.getsource(normalized_loss))
|
|
f.write("\nTraining Cases:\n")
|
|
f.write("[theta0, omega0, alpha0, desired_theta]\n")
|
|
for case in state_0.cpu().numpy():
|
|
f.write(f"{case.tolist()}\n")
|
|
|
|
# Create log file with header.
|
|
with open(log_file, "w", newline="") as csvfile:
|
|
csv_writer = csv.writer(csvfile)
|
|
csv_writer.writerow(["Epoch", "Loss"])
|
|
|
|
# Begin training loop.
|
|
for epoch in range(num_epochs + 1):
|
|
optimizer.zero_grad()
|
|
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
|
loss = current_loss_fn(state_traj)
|
|
loss.backward()
|
|
model_file = os.path.join(controllers_dir, f"controller_{epoch}.pth")
|
|
torch.save(controller.state_dict(), model_file)
|
|
print(f"{model_file} saved with loss: {loss.item()}")
|
|
optimizer.step()
|
|
with open(log_file, "a", newline="") as csvfile:
|
|
csv_writer = csv.writer(csvfile)
|
|
csv_writer.writerow([epoch, loss.item()])
|
|
|
|
print("Training complete. Models and logs are saved under respective directories for each loss function.")
|