import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt import pandas as pd # Load Controller controller_file_name = f"/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/controller_base.pth" class PendulumController(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Linear(4, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 1) ) def forward(self, x): return self.net(x) controller = PendulumController() controller.load_state_dict(torch.load(controller_file_name)) controller.eval() print(f"{controller_file_name} loaded.") # Constants m = 10.0 g = 9.81 R = 1.0 # Time step settings dt = 0.01 # Fixed time step T = 20.0 # Total simulation time num_steps = int(T / dt) t_eval = np.linspace(0, T, num_steps) # Define ODE System (RK4) - Also Returns Torque def pendulum_ode_step(state, dt, desired_theta): theta, omega, alpha = state def compute_torque(th, om, al): # Evaluate NN -> torque inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32) with torch.no_grad(): torque = controller(inp) torque = torch.clamp(torque, -250, 250) return float(torque) def derivatives(state, torque): th, om, al = state a = (g / R) * np.sin(th) + torque / (m * R**2) return np.array([om, a, 0]) # dtheta, domega, dalpha # Compute k1 torque1 = compute_torque(theta, omega, alpha) k1 = dt * derivatives(state, torque1) # Compute k2 state_k2 = state + 0.5 * k1 torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2]) k2 = dt * derivatives(state_k2, torque2) # Compute k3 state_k3 = state + 0.5 * k2 torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2]) k3 = dt * derivatives(state_k3, torque3) # Compute k4 state_k4 = state + k3 torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2]) k4 = dt * derivatives(state_k4, torque4) # Update state using RK4 formula new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0 # Compute weighted final torque final_torque = (torque1 + 2*torque2 + 2*torque3 + torque4) / 6.0 return new_state, final_torque # Run Simulations for Different Initial Conditions # [theta0, omega0, alpha0, desired_theta] in_sample_cases = [ # Theta perturbations (1/6 * np.pi, 0.0, 0.0, 0.0), (-1/6 * np.pi, 0.0, 0.0, 0.0), (2/3 * np.pi, 0.0, 0.0, 0.0), (-2/3 * np.pi, 0.0, 0.0, 0.0), # # Omega perturbations # (0.0, 1/3 * np.pi, 0.0, 0.0), # (0.0, -1/3 * np.pi, 0.0, 0.0), # (0.0, 2 * np.pi, 0.0, 0.0), # (0.0, -2 * np.pi, 0.0, 0.0), # # Return to non-zero theta # (0.0, 0.0, 0.0, 2*np.pi), # (0.0, 0.0, 0.0, -2*np.pi), # (0.0, 0.0, 0.0, 1/2 * np.pi), # (0.0, 0.0, 0.0, -1/2 *np.pi), # (0.0, 0.0, 0.0, 1/3 * np.pi), # (0.0, 0.0, 0.0, -1/3 *np.pi), # # Mix cases # (1/4 * np.pi, 1 * np.pi, 0.0, 0.0), # (-1/4 * np.pi, -1 * np.pi, 0.0, 0.0), # (1/2 * np.pi, -1 * np.pi, 0.0, 1/3 * np.pi), # (-1/2 * np.pi, 1 * np.pi, 0.0, -1/3 *np.pi), # (1/4 * np.pi, 1 * np.pi, 0.0, 2 * np.pi), # (-1/4 * np.pi, -1 * np.pi, 0.0, 2 * np.pi), # (1/2 * np.pi, -1 * np.pi, 0.0, 4 * np.pi), # (-1/2 * np.pi, 1 * np.pi, 0.0, -4 *np.pi), ] # Validation in-sample cases print("Performing in-sample validation") losses = [] final_thetas = [] for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(in_sample_cases): state = np.array([theta0, omega0, alpha0]) theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], [] for _ in range(num_steps): # Save values theta_vals.append(state[0]) omega_vals.append(state[1]) alpha_vals.append(state[2]) # Compute ODE step with real state state, torque = pendulum_ode_step(state, dt, desired_theta) # Store torque torque_vals.append(torque) # Convert lists to arrays theta_vals = np.array(theta_vals) omega_vals = np.array(omega_vals) alpha_vals = np.array(alpha_vals) torque_vals = np.array(torque_vals) # Get the final theta of the system at t=t_final final_theta = theta_vals[-1] final_thetas.append(final_theta) # Calculate this specific condition's loss loss = 1e3 * np.mean((theta_vals - desired_theta)**2) losses.append(loss) # Plot Results fig, ax1 = plt.subplots(figsize=(10, 6)) ax1.plot(t_eval, theta_vals, label="theta", color="blue") ax1.plot(t_eval, omega_vals, label="omega", color="green") ax1.plot(t_eval, alpha_vals, label="alpha", color="red") ax1.axhline(desired_theta, label="Desired Theta", color="black") # Draw horizontal lines at theta = 2n*pi (as many as fit within range) y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals)) y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals)) n_min = int(np.ceil(y_min / (2 * np.pi))) n_max = int(np.floor(y_max / (2 * np.pi))) theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)] ax1.set_xlabel("time [s]") ax1.set_ylabel("theta, omega, alpha") ax1.grid(True) ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--") ax2.set_ylabel("Torque [Nm]") ax2.legend(loc="upper right") plt.title(f"IC (theta={theta0:.3f}, omega={omega0:.3f}, alpha={alpha0:.3f})") plt.tight_layout() filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png" plt.savefig(f"validation/in-sample/{filename}") plt.close() print(f"Saved in-sample validation case {idx+1}") # Create a DataFrame for tabular representation df_losses = pd.DataFrame(in_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"]) df_losses["final_theta"] = final_thetas df_losses["loss"] = losses # Add run # column df_losses.insert(0, "Run #", range(1, len(in_sample_cases) + 1)) # Print the table print(df_losses.to_string(index=False)) print(f"\nAverage Loss for In-Sample Validation: {np.mean(losses):.4f}") desired_thetas = np.array([case[3] for case in in_sample_cases]) final_thetas = np.array(final_thetas) print(f"\nAverage abs(Final Theta - Desired Theta) for In-Sample Validation: {np.mean(np.abs(final_thetas - desired_thetas)):.4f}") # Out-of-sample validation print("\nPerforming out-of-sample validation") # Out of sample cases previously generated by numpy out_sample_cases = [ (-2.198958, -4.428501, 0.450833, 0.000000), # (1.714196, -0.769896, 0.202738, 0.000000), # (0.241195, -5.493715, 0.438996, 0.000000), # (0.030605, 4.901513, -0.479243, 0.000000), # (1.930445, -1.301926, -0.454050, 0.000000), # (-0.676063, 4.246865, 0.036303, 0.000000), # (0.734920, -5.925202, 0.047097, 0.000000), # (-3.074471, -3.535424, 0.315438, 0.000000), # (-0.094486, 6.111091, 0.150525, 0.000000), # (-1.647671, 5.720526, 0.334181, 0.000000), # (-2.611260, 5.087704, 0.045460, -3.610785), # (1.654137, 0.982081, -0.192725, 1.003872), # (-2.394899, 3.550547, -0.430938, 3.261897), # (0.474917, 0.555166, -0.285173, 1.866752), # (-0.640369, -4.678490, -0.340663, 3.150098), # (1.747517, -3.248204, -0.001520, 1.221787), # (2.505283, -2.875006, -0.065617, -3.690269), # (1.337244, 2.221707, 0.044979, -2.459730), # (1.531012, 2.230981, -0.291206, -1.924535), # (-1.065792, 4.320740, 0.075405, -1.550644), ] losses = [] final_thetas = [] for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(out_sample_cases): state = np.array([theta0, omega0, alpha0]) theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], [] for _ in range(num_steps): # Save values theta_vals.append(state[0]) omega_vals.append(state[1]) alpha_vals.append(state[2]) # Compute ODE step with real state state, torque = pendulum_ode_step(state, dt, desired_theta) # Store torque torque_vals.append(torque) # Convert lists to arrays theta_vals = np.array(theta_vals) omega_vals = np.array(omega_vals) alpha_vals = np.array(alpha_vals) torque_vals = np.array(torque_vals) # Get the final theta of the system at t=t_final final_theta = theta_vals[-1] final_thetas.append(final_theta) # Calculate this specific condition's loss loss = 1e3 * np.mean((theta_vals - desired_theta)**2) losses.append(loss) # Plot Results fig, ax1 = plt.subplots(figsize=(10, 6)) ax1.plot(t_eval, theta_vals, label="theta", color="blue") ax1.plot(t_eval, omega_vals, label="omega", color="green") ax1.plot(t_eval, alpha_vals, label="alpha", color="red") ax1.axhline(desired_theta, label="Desired Theta", color="black") # Draw horizontal lines at theta = 2n*pi (as many as fit within range) y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals)) y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals)) n_min = int(np.ceil(y_min / (2 * np.pi))) n_max = int(np.floor(y_max / (2 * np.pi))) theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)] ax1.set_xlabel("time [s]") ax1.set_ylabel("theta, omega, alpha") ax1.grid(True) ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--") ax2.set_ylabel("Torque [Nm]") ax2.legend(loc="upper right") plt.title(f"IC (theta={theta0:.3f}, omega={omega0:.3f}, alpha={alpha0:.3f})") plt.tight_layout() filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png" plt.savefig(f"validation/out-of-sample/{filename}") plt.close() print(f"Saved out-of-sample validation case {idx+1}") # Create a DataFrame for tabular representation df_losses = pd.DataFrame(out_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"]) df_losses["final_theta"] = final_thetas df_losses["loss"] = losses # Add run # column df_losses.insert(0, "Run #", range(1, len(out_sample_cases) + 1)) # Print the table print(df_losses.to_string(index=False)) print(f"\nAverage Loss for Out-of-Sample Validation: {np.mean(losses):.4f}") desired_thetas = np.array([case[3] for case in out_sample_cases]) final_thetas = np.array(final_thetas) print(f"\nAverage abs(Final Theta - Desired Theta) for Out-of-Sample Validation: {np.mean(np.abs(final_thetas - desired_thetas)):.4f}")