import os import json import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # --- Helper function to filter epoch data --- def filter_epoch_data(epochs, theta_over_epochs, epoch_range, epoch_step): """ Filters the list of epochs and corresponding theta values. Only epochs between epoch_range[0] and epoch_range[1] (inclusive) are kept, and then every epoch_step element is selected. """ filtered_epochs = [] filtered_theta_over_epochs = [] for i, ep in enumerate(epochs): if ep >= epoch_range[0] and ep <= epoch_range[1]: filtered_epochs.append(ep) filtered_theta_over_epochs.append(theta_over_epochs[i]) if epoch_step > 1: filtered_epochs = filtered_epochs[::epoch_step] filtered_theta_over_epochs = filtered_theta_over_epochs[::epoch_step] return filtered_epochs, filtered_theta_over_epochs # --- Composite plotting functions (with z-scale set to linear) --- def plot_3d_epoch_evolution_on_axis(ax, epochs, theta_over_epochs, desired_theta, title, num_steps, dt): time_steps = np.arange(num_steps) * dt theta_values = np.concatenate(theta_over_epochs) theta_min = np.min(theta_values) theta_max = np.max(theta_values) desired_range_min = max(theta_min, desired_theta - 1.5 * np.pi) desired_range_max = min(theta_max, desired_theta + 1.5 * np.pi) for epoch, theta_vals in reversed(list(zip(epochs, theta_over_epochs))): masked_theta_vals = np.array(theta_vals) masked_theta_vals[(masked_theta_vals < desired_range_min) | (masked_theta_vals > desired_range_max)] = np.nan ax.plot([epoch] * len(time_steps), time_steps, masked_theta_vals) epochs_array = np.array(epochs) ax.plot(epochs_array, [time_steps.max()] * len(epochs_array), [desired_theta] * len(epochs_array), color='r', linestyle='--', linewidth=2, label='Desired Theta') ax.set_xlabel("Epoch") ax.set_ylabel("Time (s)") ax.set_zlabel("Theta (rad)") # ax.set_zscale('symlog') ax.set_title(title) ax.set_zlim(desired_range_min, desired_range_max) ax.view_init(elev=20, azim=-135) def plot_composite_loss_functions_for_condition(cond_results, condition_name, desired_theta, num_steps, dt, loss_list, save_path, plot_epoch_range, plot_epoch_step, swap_columns=False): total_rows = 1 + len(loss_list) # one row for "constant" + one row per loss function fig = plt.figure(figsize=(12, 3 * total_rows)) gs = gridspec.GridSpec(total_rows, 2) # Top row: "constant" spanning both columns ax_const = fig.add_subplot(gs[0, :], projection='3d') epochs_const, theta_const = cond_results["constant"] epochs_const, theta_const = filter_epoch_data(epochs_const, theta_const, plot_epoch_range, plot_epoch_step) plot_3d_epoch_evolution_on_axis(ax_const, epochs_const, theta_const, desired_theta, "constant", num_steps, dt) # For each loss in the provided list, plot the pair of original and mirrored for i, loss in enumerate(loss_list): if not swap_columns: # Left: original; Right: mirrored. ax_left = fig.add_subplot(gs[i+1, 0], projection='3d') if loss in cond_results: epochs_loss, theta_loss = cond_results[loss] epochs_loss, theta_loss = filter_epoch_data(epochs_loss, theta_loss, plot_epoch_range, plot_epoch_step) plot_3d_epoch_evolution_on_axis(ax_left, epochs_loss, theta_loss, desired_theta, loss, num_steps, dt) else: ax_left.set_title(f"No data for {loss}") ax_right = fig.add_subplot(gs[i+1, 1], projection='3d') mirrored_loss = loss + "_mirrored" if mirrored_loss in cond_results: epochs_mir, theta_mir = cond_results[mirrored_loss] epochs_mir, theta_mir = filter_epoch_data(epochs_mir, theta_mir, plot_epoch_range, plot_epoch_step) plot_3d_epoch_evolution_on_axis(ax_right, epochs_mir, theta_mir, desired_theta, mirrored_loss, num_steps, dt) else: ax_right.set_title(f"No data for {mirrored_loss}") else: # Swap: Left: mirrored; Right: original. mirrored_loss = loss + "_mirrored" ax_left = fig.add_subplot(gs[i+1, 0], projection='3d') if mirrored_loss in cond_results: epochs_mir, theta_mir = cond_results[mirrored_loss] epochs_mir, theta_mir = filter_epoch_data(epochs_mir, theta_mir, plot_epoch_range, plot_epoch_step) plot_3d_epoch_evolution_on_axis(ax_left, epochs_mir, theta_mir, desired_theta, mirrored_loss, num_steps, dt) else: ax_left.set_title(f"No data for {mirrored_loss}") ax_right = fig.add_subplot(gs[i+1, 1], projection='3d') if loss in cond_results: epochs_loss, theta_loss = cond_results[loss] epochs_loss, theta_loss = filter_epoch_data(epochs_loss, theta_loss, plot_epoch_range, plot_epoch_step) plot_3d_epoch_evolution_on_axis(ax_right, epochs_loss, theta_loss, desired_theta, loss, num_steps, dt) else: ax_right.set_title(f"No data for {loss}") plt.tight_layout() plt.savefig(save_path, dpi=300) plt.close() print(f"Saved composite plot to {save_path}") # --- Load simulation results from JSON files (one per condition) --- output_dir = "/home/judson/Neural-Networks-in-GNC/inverted_pendulum/analysis/time_weighting2" # Get all JSON files (each representing one condition) condition_files = [f for f in os.listdir(output_dir) if f.endswith(".json")] # Define simulation parameters (must match those used in run_tests.py) dt = 0.02 num_steps = 500 # Specify the epoch range and step for plotting plot_epoch_range = (0, 100) # Only plot epochs between 0 and 100 plot_epoch_step = 1 # Use every epoch (change this if you want to sample) # For each condition file, load its data and create the composite plots for file in condition_files: condition = file.replace(".json", "") condition_file = os.path.join(output_dir, file) with open(condition_file, "r") as f: cond_results = json.load(f) # Determine desired_theta from constant loss data (last theta value of the last epoch) epochs_const, theta_const = cond_results["constant"] desired_theta = theta_const[-1][-1] # Create a directory for this condition's plots condition_path = os.path.join(output_dir, condition) os.makedirs(condition_path, exist_ok=True) # Composite figure for linear, quadratic, cubic (with constant at top) loss_list1 = ["linear", "quadratic", "cubic"] composite_save_path1 = os.path.join(condition_path, "composite_epoch_evolution_linear_quadratic_cubic.png") plot_composite_loss_functions_for_condition(cond_results, condition, desired_theta, num_steps, dt, loss_list1, composite_save_path1, plot_epoch_range, plot_epoch_step) # Composite figure for inverse, inverse_squared, inverse_cubed (mirrored version on the left) loss_list2 = ["inverse", "inverse_squared", "inverse_cubed"] composite_save_path2 = os.path.join(condition_path, "composite_epoch_evolution_inverse_losses.png") plot_composite_loss_functions_for_condition(cond_results, condition, desired_theta, num_steps, dt, loss_list2, composite_save_path2, plot_epoch_range, plot_epoch_step, swap_columns=True) print(f"Completed plotting for condition: {condition}")