import os import numpy as np import torch import torch.nn as nn import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from multiprocessing import Pool, cpu_count # Define PendulumController class from PendulumController import PendulumController # ODE solver (RK4 method) def pendulum_ode_step(state, dt, desired_theta, controller): theta, omega, alpha = state def compute_torque(th, om, al): inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32) with torch.no_grad(): torque = controller(inp) torque = torch.clamp(torque, -250, 250) return float(torque) def derivatives(state, torque): th, om, al = state a = (g / R) * np.sin(th) + torque / (m * R**2) return np.array([om, a, 0]) # dtheta, domega, dalpha # Compute RK4 steps torque1 = compute_torque(theta, omega, alpha) k1 = dt * derivatives(state, torque1) state_k2 = state + 0.5 * k1 torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2]) k2 = dt * derivatives(state_k2, torque2) state_k3 = state + 0.5 * k2 torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2]) k3 = dt * derivatives(state_k3, torque3) state_k4 = state + k3 torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2]) k4 = dt * derivatives(state_k4, torque4) new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0 return new_state # Constants g = 9.81 # Gravity R = 1.0 # Length of the pendulum m = 10.0 # Mass dt = 0.02 # Time step num_steps = 500 # Simulation time steps # Directory containing controller files loss_function = "quadratic" controller_dir = f"/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/normalized/training/{loss_function}/controllers" #controller_dir = f"C:/Users/Judson/Desktop/New Gitea/Neural-Networks-in-GNC/inverted_pendulum/training/{loss_function}/controllers" controller_files = sorted([f for f in os.listdir(controller_dir) if f.startswith("controller_") and f.endswith(".pth")]) # Sorting controllers by epoch controller_epochs = [int(f.split('_')[1].split('.')[0]) for f in controller_files] sorted_controllers = [x for _, x in sorted(zip(controller_epochs, controller_files))] # **Epoch Range Selection** epoch_range = (0, 1000) # Set your desired range (e.g., (0, 5000) or (0, 100)) filtered_controllers = [ f for f in sorted_controllers if epoch_range[0] <= int(f.split('_')[1].split('.')[0]) <= epoch_range[1] ] # **Granularity Control: Select every Nth controller** N = 1 # Change this value to adjust granularity (e.g., every 5th controller) selected_controllers = filtered_controllers[::N] # Take every Nth controller within the range # Initial condition # theta0, omega0, alpha0, desired_theta = (-np.pi, -2*np.pi, 0.0, -1.3*np.pi) # Example initial condition theta0, omega0, alpha0, desired_theta = (-np.pi, 0.0, 0.0, 0.0) # Example initial condition # Parallel function must return epoch explicitly def run_simulation(controller_file): epoch = int(controller_file.split('_')[1].split('.')[0]) # Load controller controller = PendulumController() controller.load_state_dict(torch.load(os.path.join(controller_dir, controller_file))) controller.eval() # Run simulation state = np.array([theta0, omega0, alpha0]) theta_vals = [] for _ in range(num_steps): theta_vals.append(state[0]) state = pendulum_ode_step(state, dt, desired_theta, controller) return epoch, theta_vals # Return epoch with data # Parallel processing if __name__ == "__main__": num_workers = min(cpu_count(), 16) # Limit to 16 workers max print(f"Using {num_workers} parallel workers...") with Pool(processes=num_workers) as pool: results = pool.map(run_simulation, selected_controllers) # Sort results by epoch to ensure correct order results.sort(key=lambda x: x[0]) epochs, theta_over_epochs = zip(*results) # Unzip sorted results # Convert results to NumPy arrays theta_over_epochs = np.array(theta_over_epochs) # Create 3D line plot fig = plt.figure(figsize=(10, 7)) ax = fig.add_subplot(111, projection='3d') time_steps = np.arange(num_steps) * dt # X-axis (time) # Plot each controller as a separate line for epoch, theta_vals in zip(epochs, theta_over_epochs): ax.plot( [epoch] * len(time_steps), # Y-axis (epoch stays constant for each line) time_steps, # X-axis (time) theta_vals, # Z-axis (theta evolution) label=f"Epoch {epoch}" if epoch % (N * 10) == 0 else "", # Label some lines for clarity ) # Labels ax.set_xlabel("Epoch") ax.set_ylabel("Time (s)") ax.set_zlabel("Theta (rad)") ax.set_title(f"Pendulum Angle Evolution for {loss_function}") # Add a horizontal line at desired_theta across all epochs and time steps epochs_array = np.array([epoch for epoch, _ in zip(epochs, theta_over_epochs)]) ax.plot( epochs_array, # X-axis spanning all epochs [time_steps.max()] * len(epochs_array), # Y-axis at the maximum time step [desired_theta] * len(epochs_array), # Constant Z-axis value of desired_theta color='r', linestyle='--', linewidth=2, label='Desired Theta at End Time' ) # Improve visibility ax.view_init(elev=20, azim=-135) # Adjust 3D perspective plt.savefig(f"{loss_function}.png", dpi=600) #plt.show() print(f"Saved plot as '{loss_function}.png'.")