Inverted pendulum controllers trained
This commit is contained in:
parent
ceda15213b
commit
dd97ce7335
@ -104,7 +104,7 @@ controller = PendulumController().to(device)
|
||||
pendulum_dynamics = PendulumDynamics(controller).to(device)
|
||||
|
||||
# Optimizer setup
|
||||
learning_rate = 1e-1
|
||||
learning_rate = 1e-2
|
||||
weight_decay = 1e-4
|
||||
optimizer = optim.Adam(controller.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
||||
|
||||
|
||||
39
training/cubic_time_weight/training_config.txt
Normal file
39
training/cubic_time_weight/training_config.txt
Normal file
@ -0,0 +1,39 @@
|
||||
Random Seed: 4529
|
||||
Time Span: 0 to 10, Points: 1000
|
||||
Learning Rate: 0.1
|
||||
Weight Decay: 0.0001
|
||||
|
||||
Loss Function:
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
time_weights = (t_span ** 3).view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
Training Cases:
|
||||
[theta0, omega0, alpha0, desired_theta]
|
||||
[0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[-0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[-2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[0.0, 1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, -1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, 6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, -6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, 0.0, 0.0, 6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, -6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, 1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, -1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, 1.0471975803375244]
|
||||
[0.0, 0.0, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 0.0]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 0.0]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 1.0471975803375244]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 12.566370964050293]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -12.566370964050293]
|
||||
5002
training/cubic_time_weight/training_log.csv
Normal file
5002
training/cubic_time_weight/training_log.csv
Normal file
File diff suppressed because it is too large
Load Diff
40
training/exponential_time_weight/training_config.txt
Normal file
40
training/exponential_time_weight/training_config.txt
Normal file
@ -0,0 +1,40 @@
|
||||
Random Seed: 4529
|
||||
Time Span: 0 to 10, Points: 1000
|
||||
Learning Rate: 0.01
|
||||
Weight Decay: 0.0001
|
||||
|
||||
Loss Function:
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
lamda_exp = 1
|
||||
time_weights = torch.exp(lamda_exp * t_span).view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
Training Cases:
|
||||
[theta0, omega0, alpha0, desired_theta]
|
||||
[0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[-0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[-2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[0.0, 1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, -1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, 6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, -6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, 0.0, 0.0, 6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, -6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, 1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, -1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, 1.0471975803375244]
|
||||
[0.0, 0.0, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 0.0]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 0.0]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 1.0471975803375244]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 12.566370964050293]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -12.566370964050293]
|
||||
5002
training/exponential_time_weight/training_log.csv
Normal file
5002
training/exponential_time_weight/training_log.csv
Normal file
File diff suppressed because it is too large
Load Diff
173
training/inverse_time_weight/trainer_inverse_time_weights.py
Normal file
173
training/inverse_time_weight/trainer_inverse_time_weights.py
Normal file
@ -0,0 +1,173 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torchdiffeq import odeint
|
||||
import numpy as np
|
||||
import inspect
|
||||
import time
|
||||
import csv
|
||||
import os
|
||||
|
||||
# Specify directory for storing results
|
||||
output_dir = "training/inverse_time_weight"
|
||||
controller_output_dir = output_dir + "/controllers"
|
||||
os.makedirs(output_dir, exist_ok=True) # Create directory if it doesn't exist
|
||||
os.makedirs(controller_output_dir, exist_ok=True) # Create directory if it doesn't exist
|
||||
|
||||
# Use a previously generated random seed
|
||||
random_seed = 4529
|
||||
|
||||
# Set the seeds for reproducibility
|
||||
torch.manual_seed(random_seed)
|
||||
np.random.seed(random_seed)
|
||||
|
||||
# Print the chosen random seed
|
||||
print(f"Random seed for torch and numpy: {random_seed}")
|
||||
|
||||
# Constants
|
||||
m = 10.0
|
||||
g = 9.81
|
||||
R = 1.0
|
||||
|
||||
# Device setup
|
||||
device = torch.device("cpu")
|
||||
|
||||
# Time grid
|
||||
t_start, t_end, t_points = 0, 10, 1000
|
||||
t_span = torch.linspace(t_start, t_end, t_points, device=device)
|
||||
|
||||
# Initial conditions (theta0, omega0, alpha0, desired_theta)
|
||||
state_0 = torch.tensor([
|
||||
[1/6 * torch.pi, 0.0, 0.0, 0.0],
|
||||
[-1/6 * torch.pi, 0.0, 0.0, 0.0],
|
||||
[2/3 * torch.pi, 0.0, 0.0, 0.0],
|
||||
[-2/3 * torch.pi, 0.0, 0.0, 0.0],
|
||||
[0.0, 1/3 * torch.pi, 0.0, 0.0],
|
||||
[0.0, -1/3 * torch.pi, 0.0, 0.0],
|
||||
[0.0, 2 * torch.pi, 0.0, 0.0],
|
||||
[0.0, -2 * torch.pi, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 2 * torch.pi],
|
||||
[0.0, 0.0, 0.0, -2 * torch.pi],
|
||||
[0.0, 0.0, 0.0, 1/2 * torch.pi],
|
||||
[0.0, 0.0, 0.0, -1/2 * torch.pi],
|
||||
[0.0, 0.0, 0.0, 1/3 * torch.pi],
|
||||
[0.0, 0.0, 0.0, -1/3 * torch.pi],
|
||||
[1/4 * torch.pi, 1 * torch.pi, 0.0, 0.0],
|
||||
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 0.0],
|
||||
[1/2 * torch.pi, -1 * torch.pi, 0.0, 1/3 * torch.pi],
|
||||
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -1/3 * torch.pi],
|
||||
[1/4 * torch.pi, 1 * torch.pi, 0.0, 2 * torch.pi],
|
||||
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 2 * torch.pi],
|
||||
[1/2 * torch.pi, -1 * torch.pi, 0.0, 4 * torch.pi],
|
||||
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -4 * torch.pi],
|
||||
], dtype=torch.float32, device=device)
|
||||
|
||||
class PendulumController(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(4, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
raw_torque = self.net(x)
|
||||
return torch.clamp(raw_torque, -250, 250)
|
||||
|
||||
class PendulumDynamics(nn.Module):
|
||||
def __init__(self, controller):
|
||||
super().__init__()
|
||||
self.controller = controller
|
||||
|
||||
def forward(self, t, state):
|
||||
theta, omega, alpha, desired_theta = state[:, 0], state[:, 1], state[:, 2], state[:, 3]
|
||||
input = torch.stack([theta, omega, alpha, desired_theta], dim=1)
|
||||
tau = self.controller(input).squeeze(-1)
|
||||
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||
return torch.stack([omega, alpha, alpha_desired - alpha, torch.zeros_like(desired_theta)], dim=1)
|
||||
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
time_weights = (1 / (t_span + 1e-3)).view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
# Initialize controller and dynamics
|
||||
controller = PendulumController().to(device)
|
||||
pendulum_dynamics = PendulumDynamics(controller).to(device)
|
||||
|
||||
# Optimizer setup
|
||||
learning_rate = 1e-1
|
||||
weight_decay = 1e-4
|
||||
optimizer = optim.Adam(controller.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
||||
|
||||
# Training parameters
|
||||
num_epochs = 5_001 # 5000 + 1 for 5000 total weight updates
|
||||
save_every = 1 # How often to save the controller.pth
|
||||
|
||||
# File paths
|
||||
config_file = os.path.join(output_dir, "training_config.txt")
|
||||
log_file = os.path.join(output_dir, "training_log.csv")
|
||||
model_file = "" # Placeholder for the model file, updated in training loop
|
||||
|
||||
# Save configuration details
|
||||
with open(config_file, "w") as f:
|
||||
f.write(f"Random Seed: {random_seed}\n")
|
||||
f.write(f"Time Span: {t_start} to {t_end}, Points: {t_points}\n")
|
||||
f.write(f"Learning Rate: {learning_rate}\n")
|
||||
f.write(f"Weight Decay: {weight_decay}\n")
|
||||
f.write("\nLoss Function:\n")
|
||||
f.write(inspect.getsource(loss_fn)) # Extract and write loss function source code
|
||||
f.write("\nTraining Cases:\n")
|
||||
f.write("[theta0, omega0, alpha0, desired_theta]\n")
|
||||
for case in state_0.cpu().numpy():
|
||||
f.write(f"{case.tolist()}\n")
|
||||
|
||||
|
||||
# Overwrite the log file at the start
|
||||
with open(log_file, "w", newline="") as csvfile:
|
||||
csv_writer = csv.writer(csvfile)
|
||||
csv_writer.writerow(["Epoch", "Loss", "Elapsed Time (s)"])
|
||||
|
||||
# Training loop with real-time logging and NaN tracking
|
||||
start_time = time.time()
|
||||
with open(log_file, "a", newline="") as csvfile:
|
||||
csv_writer = csv.writer(csvfile)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
epoch_start_time = time.time()
|
||||
|
||||
optimizer.zero_grad()
|
||||
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||
loss = loss_fn(state_traj, t_span)
|
||||
|
||||
elapsed_time = time.time() - epoch_start_time
|
||||
|
||||
if torch.isnan(loss):
|
||||
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||
csv_writer.writerow([epoch, "NaN detected", elapsed_time])
|
||||
csvfile.flush() # Ensure real-time writing
|
||||
optimizer.zero_grad()
|
||||
continue
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Log normal loss
|
||||
csv_writer.writerow([epoch, loss.item(), elapsed_time])
|
||||
csvfile.flush() # Ensure real-time writing
|
||||
|
||||
if epoch % save_every == 0:
|
||||
print(f"Epoch {epoch}/{num_epochs} | Loss: {loss.item():.6f} | Time: {elapsed_time:.4f} sec")
|
||||
model_file = os.path.join(controller_output_dir, f"controller_{epoch}.pth")
|
||||
torch.save(controller.state_dict(), model_file)
|
||||
|
||||
# Final save
|
||||
torch.save(controller.state_dict(), model_file)
|
||||
print(f"No time weight training complete. Model and files saved in directory '{output_dir}'. Model saved as '{model_file}'. Logs saved in '{log_file}' and configuration in '{config_file}'.")
|
||||
39
training/inverse_time_weight/training_config.txt
Normal file
39
training/inverse_time_weight/training_config.txt
Normal file
@ -0,0 +1,39 @@
|
||||
Random Seed: 4529
|
||||
Time Span: 0 to 10, Points: 1000
|
||||
Learning Rate: 0.1
|
||||
Weight Decay: 0.0001
|
||||
|
||||
Loss Function:
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
time_weights = (1 / (t_span + 1e-3)).view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
Training Cases:
|
||||
[theta0, omega0, alpha0, desired_theta]
|
||||
[0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[-0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[-2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[0.0, 1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, -1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, 6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, -6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, 0.0, 0.0, 6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, -6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, 1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, -1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, 1.0471975803375244]
|
||||
[0.0, 0.0, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 0.0]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 0.0]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 1.0471975803375244]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 12.566370964050293]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -12.566370964050293]
|
||||
5002
training/inverse_time_weight/training_log.csv
Normal file
5002
training/inverse_time_weight/training_log.csv
Normal file
File diff suppressed because it is too large
Load Diff
39
training/linear_time_weight/training_config.txt
Normal file
39
training/linear_time_weight/training_config.txt
Normal file
@ -0,0 +1,39 @@
|
||||
Random Seed: 4529
|
||||
Time Span: 0 to 10, Points: 1000
|
||||
Learning Rate: 0.1
|
||||
Weight Decay: 0.0001
|
||||
|
||||
Loss Function:
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
time_weights = t_span.view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
Training Cases:
|
||||
[theta0, omega0, alpha0, desired_theta]
|
||||
[0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[-0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[-2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[0.0, 1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, -1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, 6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, -6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, 0.0, 0.0, 6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, -6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, 1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, -1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, 1.0471975803375244]
|
||||
[0.0, 0.0, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 0.0]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 0.0]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 1.0471975803375244]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 12.566370964050293]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -12.566370964050293]
|
||||
5002
training/linear_time_weight/training_log.csv
Normal file
5002
training/linear_time_weight/training_log.csv
Normal file
File diff suppressed because it is too large
Load Diff
39
training/quadratic_time_weight/training_config.txt
Normal file
39
training/quadratic_time_weight/training_config.txt
Normal file
@ -0,0 +1,39 @@
|
||||
Random Seed: 4529
|
||||
Time Span: 0 to 10, Points: 1000
|
||||
Learning Rate: 0.1
|
||||
Weight Decay: 0.0001
|
||||
|
||||
Loss Function:
|
||||
def loss_fn(state_traj, t_span):
|
||||
theta = state_traj[:, :, 0]
|
||||
desired_theta = state_traj[:, :, 3]
|
||||
|
||||
# Make the time weights broadcastable for theta [len(t_span), len(batches)]
|
||||
time_weights = (t_span ** 2).view(-1, 1)
|
||||
|
||||
return 1e3 * torch.mean(time_weights * (theta - desired_theta) ** 2)
|
||||
|
||||
Training Cases:
|
||||
[theta0, omega0, alpha0, desired_theta]
|
||||
[0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[-0.5235987901687622, 0.0, 0.0, 0.0]
|
||||
[2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[-2.094395160675049, 0.0, 0.0, 0.0]
|
||||
[0.0, 1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, -1.0471975803375244, 0.0, 0.0]
|
||||
[0.0, 6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, -6.2831854820251465, 0.0, 0.0]
|
||||
[0.0, 0.0, 0.0, 6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, -6.2831854820251465]
|
||||
[0.0, 0.0, 0.0, 1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, -1.5707963705062866]
|
||||
[0.0, 0.0, 0.0, 1.0471975803375244]
|
||||
[0.0, 0.0, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 0.0]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 0.0]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 1.0471975803375244]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -1.0471975803375244]
|
||||
[0.7853981852531433, 3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[-0.7853981852531433, -3.1415927410125732, 0.0, 6.2831854820251465]
|
||||
[1.5707963705062866, -3.1415927410125732, 0.0, 12.566370964050293]
|
||||
[-1.5707963705062866, 3.1415927410125732, 0.0, -12.566370964050293]
|
||||
5002
training/quadratic_time_weight/training_log.csv
Normal file
5002
training/quadratic_time_weight/training_log.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user