Adding 'desired_theta' as neural network input
This commit is contained in:
parent
1b7b40adbc
commit
cdefc00226
8
check_for_cuda.py
Normal file
8
check_for_cuda.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
print("CUDA is available")
|
||||||
|
print("Number of CUDA devices:", torch.cuda.device_count())
|
||||||
|
print("Device name:", torch.cuda.get_device_name(0))
|
||||||
|
else:
|
||||||
|
print("CUDA is not available")
|
||||||
BIN
clamped_no_time_penalty/1_validation.png
Normal file
BIN
clamped_no_time_penalty/1_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 54 KiB |
BIN
clamped_no_time_penalty/2_validation.png
Normal file
BIN
clamped_no_time_penalty/2_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 57 KiB |
BIN
clamped_no_time_penalty/3_validation.png
Normal file
BIN
clamped_no_time_penalty/3_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
BIN
clamped_no_time_penalty/4_validation.png
Normal file
BIN
clamped_no_time_penalty/4_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 57 KiB |
BIN
clamped_no_time_penalty/5_validation.png
Normal file
BIN
clamped_no_time_penalty/5_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 60 KiB |
BIN
clamped_no_time_penalty/6_validation.png
Normal file
BIN
clamped_no_time_penalty/6_validation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 63 KiB |
161
clamped_no_time_penalty/trainer.py
Normal file
161
clamped_no_time_penalty/trainer.py
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torchdiffeq import odeint
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
"""
|
||||||
|
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
|
||||||
|
Returns shape: (batch_size, 1) => torque.
|
||||||
|
"""
|
||||||
|
raw_torque = self.net(x_3d)
|
||||||
|
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
|
||||||
|
return clamped_torque
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) Define ODE System Using `odeint`
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
class PendulumDynamics3D(nn.Module):
|
||||||
|
"""
|
||||||
|
Defines the ODE system for [theta, omega, alpha] with torque tracking.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, controller):
|
||||||
|
super().__init__()
|
||||||
|
self.controller = controller
|
||||||
|
|
||||||
|
def forward(self, t, state):
|
||||||
|
"""
|
||||||
|
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
|
||||||
|
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
|
||||||
|
"""
|
||||||
|
|
||||||
|
theta = state[:, 0]
|
||||||
|
omega = state[:, 1]
|
||||||
|
alpha = state[:, 2]
|
||||||
|
tau_prev = state[:, 3]
|
||||||
|
|
||||||
|
# Create tensor input for controller: [theta, omega, alpha]
|
||||||
|
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
|
||||||
|
|
||||||
|
# Compute torque using the controller
|
||||||
|
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
|
||||||
|
|
||||||
|
# Compute desired alpha
|
||||||
|
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||||
|
|
||||||
|
# Define ODE system
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_desired - alpha # Relaxation term
|
||||||
|
dtau = tau - tau_prev # Keep track of torque evolution
|
||||||
|
|
||||||
|
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Loss Function
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
def loss_fn(state_traj, t_span):
|
||||||
|
"""
|
||||||
|
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_traj: Tensor of shape (time_steps, batch_size, 4).
|
||||||
|
t_span: Tensor of time steps (time_steps,).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
total_loss, (loss_theta, loss_omega)
|
||||||
|
"""
|
||||||
|
theta = state_traj[:, :, 0] # (time_steps, batch_size)
|
||||||
|
|
||||||
|
loss_theta = 1e3 * torch.mean(theta**2)
|
||||||
|
|
||||||
|
# Combine the losses
|
||||||
|
total_loss = loss_theta
|
||||||
|
|
||||||
|
return total_loss, (loss_theta)
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 4) Training Setup
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
# Create the controller and pendulum dynamics model
|
||||||
|
controller = PendulumController3D().to(device)
|
||||||
|
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
|
||||||
|
|
||||||
|
# Define optimizer
|
||||||
|
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
|
||||||
|
|
||||||
|
# Initial conditions: [theta, omega, alpha, tau_prev]
|
||||||
|
initial_conditions = [
|
||||||
|
[0.1, 0.0, 0.0, 0.0], # Small perturbation
|
||||||
|
[-0.5, 0.0, 0.0, 0.0],
|
||||||
|
[6.28, 6.28, 0.0, 0.0],
|
||||||
|
[1.57, 0.5, 0.0, 0.0],
|
||||||
|
[0.0, -6.28, 0.0, 0.0],
|
||||||
|
[1.57, -6.28, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
|
||||||
|
# Convert to torch tensor (batch_size, 4)
|
||||||
|
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
||||||
|
|
||||||
|
# Time grid
|
||||||
|
t_span = torch.linspace(0, 10, 200, device=device)
|
||||||
|
|
||||||
|
num_epochs = 100_000
|
||||||
|
print_every = 25
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 5) Training Loop
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# Integrate the ODE
|
||||||
|
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||||
|
# state_traj shape: (time_steps, batch_size, 4)
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
total_loss, (l_theta) = loss_fn(state_traj, t_span)
|
||||||
|
|
||||||
|
# Check for NaN values
|
||||||
|
if torch.isnan(total_loss):
|
||||||
|
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||||
|
optimizer.zero_grad()
|
||||||
|
continue # Skip this iteration
|
||||||
|
|
||||||
|
# Backprop
|
||||||
|
total_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
|
# Print progress
|
||||||
|
if epoch % print_every == 0:
|
||||||
|
print(f"Epoch {epoch:4d}/{num_epochs} | "
|
||||||
|
f"Total: {total_loss.item():.6f} | "
|
||||||
|
f"Theta: {l_theta.item():.6f}")
|
||||||
|
|
||||||
|
torch.save(controller.state_dict(), "controller_cpu_clamped_no_time_penalty.pth")
|
||||||
|
print("Model saved as 'controller_cpu_clamped_no_time_penalty.pth'.")
|
||||||
118
clamped_no_time_penalty/validator.py
Normal file
118
clamped_no_time_penalty/validator.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from scipy.integrate import solve_ivp
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
controller_file_name = "controller_cpu_clamped_no_time_penalty.pth"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
class PendulumController3D(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(PendulumController3D, self).__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(3, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 64),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(64, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x_3d):
|
||||||
|
return self.net(x_3d)
|
||||||
|
|
||||||
|
# Load the trained 3D model
|
||||||
|
controller = PendulumController3D()
|
||||||
|
controller.load_state_dict(torch.load(controller_file_name))
|
||||||
|
controller.eval()
|
||||||
|
print(f"{controller_file_name} loaded.")
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 2) ODE: State = [theta, omega, alpha].
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
m = 10.0
|
||||||
|
g = 9.81
|
||||||
|
R = 1.0
|
||||||
|
|
||||||
|
def pendulum_ode_3d(t, state):
|
||||||
|
theta, omega, alpha = state
|
||||||
|
|
||||||
|
# Evaluate NN -> torque
|
||||||
|
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
|
||||||
|
with torch.no_grad():
|
||||||
|
torque = controller(inp).item()
|
||||||
|
# Clamp torque to ±250 for consistency with training
|
||||||
|
torque = np.clip(torque, -250, 250)
|
||||||
|
|
||||||
|
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
|
||||||
|
|
||||||
|
dtheta = omega
|
||||||
|
domega = alpha
|
||||||
|
dalpha = alpha_des - alpha
|
||||||
|
return [dtheta, domega, dalpha]
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
# 3) Validate for multiple initial conditions
|
||||||
|
# ----------------------------------------------------------------
|
||||||
|
initial_conditions_3d = [
|
||||||
|
(0.1, 0.0, 0.0),
|
||||||
|
(0.5, 0.0, 0.0),
|
||||||
|
(1.0, 0.0, 0.0),
|
||||||
|
(1.57, 0.5, 0.0),
|
||||||
|
(0.0, -6.28, 0.0),
|
||||||
|
(6.28, 6.28, 0.0),
|
||||||
|
]
|
||||||
|
|
||||||
|
t_span = (0, 20)
|
||||||
|
t_eval = np.linspace(0, 20, 2000)
|
||||||
|
|
||||||
|
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
||||||
|
sol = solve_ivp(
|
||||||
|
pendulum_ode_3d,
|
||||||
|
t_span,
|
||||||
|
[theta0, omega0, alpha0],
|
||||||
|
t_eval=t_eval,
|
||||||
|
method='RK45'
|
||||||
|
)
|
||||||
|
|
||||||
|
t = sol.t
|
||||||
|
theta = sol.y[0]
|
||||||
|
omega = sol.y[1]
|
||||||
|
alpha_arr = sol.y[2]
|
||||||
|
|
||||||
|
# Recompute torque over time
|
||||||
|
torques = []
|
||||||
|
alpha_des_vals = []
|
||||||
|
for (th, om, al) in zip(theta, omega, alpha_arr):
|
||||||
|
with torch.no_grad():
|
||||||
|
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
|
||||||
|
torque_val = np.clip(torque_val, -250, 250)
|
||||||
|
torques.append(torque_val)
|
||||||
|
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
|
||||||
|
torques = np.array(torques)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
fig, ax1 = plt.subplots(figsize=(10,6))
|
||||||
|
ax1.plot(t, theta, label="theta", color="blue")
|
||||||
|
ax1.plot(t, omega, label="omega", color="green")
|
||||||
|
ax1.plot(t, alpha_arr, label="alpha", color="red")
|
||||||
|
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
|
||||||
|
|
||||||
|
ax1.set_xlabel("time [s]")
|
||||||
|
ax1.set_ylabel("theta, omega, alpha")
|
||||||
|
ax1.grid(True)
|
||||||
|
ax1.legend(loc="upper left")
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
|
||||||
|
ax2.set_ylabel("Torque [Nm]")
|
||||||
|
ax2.legend(loc="upper right")
|
||||||
|
|
||||||
|
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.savefig(f"{idx+1}_validation.png")
|
||||||
|
plt.close()
|
||||||
|
print(f"Saved {idx+1}_validation.png")
|
||||||
191
trainer.py
191
trainer.py
@ -3,173 +3,134 @@ import torch.nn as nn
|
|||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from torchdiffeq import odeint
|
from torchdiffeq import odeint
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import random
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
# Generate a random seed
|
||||||
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
random_seed = random.randint(0, 10000)
|
||||||
# ----------------------------------------------------------------
|
|
||||||
class PendulumController3D(nn.Module):
|
# Set the seeds for reproducibility
|
||||||
|
torch.manual_seed(random_seed)
|
||||||
|
np.random.seed(random_seed)
|
||||||
|
|
||||||
|
# Print the chosen random seed
|
||||||
|
print(f"Random seed for torch and numpy: {random_seed}")
|
||||||
|
|
||||||
|
class PendulumController(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
nn.Linear(3, 64),
|
nn.Linear(4, 64),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(64, 64),
|
nn.Linear(64, 64),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(64, 1)
|
nn.Linear(64, 1)
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x_3d):
|
def forward(self, x):
|
||||||
"""
|
raw_torque = self.net(x)
|
||||||
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
|
return torch.clamp(raw_torque, -250, 250) # Clamp torque
|
||||||
Returns shape: (batch_size, 1) => torque.
|
|
||||||
"""
|
|
||||||
raw_torque = self.net(x_3d)
|
|
||||||
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
|
|
||||||
return clamped_torque
|
|
||||||
|
|
||||||
|
# Constants
|
||||||
# ----------------------------------------------------------------
|
|
||||||
# 2) Define ODE System Using `odeint`
|
|
||||||
# ----------------------------------------------------------------
|
|
||||||
m = 10.0
|
m = 10.0
|
||||||
g = 9.81
|
g = 9.81
|
||||||
R = 1.0
|
R = 1.0
|
||||||
|
|
||||||
class PendulumDynamics3D(nn.Module):
|
class PendulumDynamics(nn.Module):
|
||||||
"""
|
|
||||||
Defines the ODE system for [theta, omega, alpha] with torque tracking.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, controller):
|
def __init__(self, controller):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.controller = controller
|
self.controller = controller
|
||||||
|
|
||||||
def forward(self, t, state):
|
def forward(self, t, state):
|
||||||
"""
|
|
||||||
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
|
|
||||||
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
|
|
||||||
"""
|
|
||||||
|
|
||||||
theta = state[:, 0]
|
theta = state[:, 0]
|
||||||
omega = state[:, 1]
|
omega = state[:, 1]
|
||||||
alpha = state[:, 2]
|
alpha = state[:, 2]
|
||||||
tau_prev = state[:, 3]
|
desired_theta = state[:, 3] # Extract desired theta
|
||||||
|
|
||||||
|
# Pass desired_theta as input to the controller
|
||||||
|
input = torch.stack([theta, omega, alpha, desired_theta], dim=1)
|
||||||
|
tau = self.controller(input).squeeze(-1)
|
||||||
|
|
||||||
# Create tensor input for controller: [theta, omega, alpha]
|
|
||||||
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
|
|
||||||
|
|
||||||
# Compute torque using the controller
|
|
||||||
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
|
|
||||||
|
|
||||||
# Compute desired alpha
|
|
||||||
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
|
||||||
|
|
||||||
# Define ODE system
|
|
||||||
dtheta = omega
|
dtheta = omega
|
||||||
domega = alpha
|
domega = alpha
|
||||||
dalpha = alpha_desired - alpha # Relaxation term
|
dalpha = alpha_desired - alpha
|
||||||
dtau = tau - tau_prev # Keep track of torque evolution
|
|
||||||
|
|
||||||
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
|
return torch.stack([dtheta, domega, dalpha, torch.zeros_like(desired_theta)], dim=1)
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
def loss_fn(state_traj):
|
||||||
# 3) Loss Function
|
theta = state_traj[:, :, 0] # Extract theta
|
||||||
# ----------------------------------------------------------------
|
desired_theta = state_traj[:, :, 3] # Extract desired theta
|
||||||
def loss_fn(state_traj, t_span):
|
|
||||||
"""
|
|
||||||
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
|
|
||||||
|
|
||||||
Args:
|
loss_theta = 1e3 * torch.mean((theta - desired_theta)**2)
|
||||||
state_traj: Tensor of shape (time_steps, batch_size, 4).
|
return loss_theta
|
||||||
t_span: Tensor of time steps (time_steps,).
|
|
||||||
|
|
||||||
Returns:
|
# Device setup
|
||||||
total_loss, (loss_theta, loss_omega)
|
device = torch.device("cpu")
|
||||||
"""
|
|
||||||
theta = state_traj[:, :, 0] # (time_steps, batch_size)
|
|
||||||
omega = state_traj[:, :, 1] # (time_steps, batch_size)
|
|
||||||
torque = state_traj[:, :, 3]
|
|
||||||
|
|
||||||
# Inverse time weights w(t) = 1 / t
|
# Initial conditions (theta0, omega0, alpha0, desired_theta)
|
||||||
# Add a small epsilon to avoid division by zero
|
state_0 = torch.tensor([
|
||||||
epsilon = 1e-6
|
# Theta perturbations
|
||||||
inverse_time_weights = 1.0 / (t_span + epsilon).unsqueeze(1) # Shape: (time_steps, 1)
|
[1/6 * torch.pi, 0.0, 0.0, 0.0],
|
||||||
linear_time_weights = t_span.unsqueeze(1)
|
[-1/6 * torch.pi, 0.0, 0.0, 0.0],
|
||||||
|
[2/3 * torch.pi, 0.0, 0.0, 0.0],
|
||||||
|
[-2/3 * torch.pi, 0.0, 0.0, 0.0],
|
||||||
|
|
||||||
# Apply inverse time weighting for theta and omega
|
# Omega perturbations
|
||||||
loss_theta = 1e-1 * torch.mean(inverse_time_weights * theta**2) # Weighted theta loss
|
[0.0, 1/3 * torch.pi, 0.0, 0.0],
|
||||||
loss_omega = 1e-2 * torch.mean(inverse_time_weights * omega**2) # Weighted omega loss
|
[0.0, -1/3 * torch.pi, 0.0, 0.0],
|
||||||
loss_torque = 1e-2 * torch.mean(linear_time_weights * torque**2)
|
[0.0, 2 * torch.pi, 0.0, 0.0],
|
||||||
|
[0.0, -2 * torch.pi, 0.0, 0.0],
|
||||||
|
|
||||||
# Combine the losses
|
# Return to non-zero theta
|
||||||
total_loss = loss_theta #+ loss_torque
|
[0.0, 0.0, 0.0, 2*torch.pi],
|
||||||
|
[0.0, 0.0, 0.0, -2*torch.pi],
|
||||||
|
[0.0, 0.0, 0.0, 1/2 * torch.pi],
|
||||||
|
[0.0, 0.0, 0.0, -1/2 *torch.pi],
|
||||||
|
[0.0, 0.0, 0.0, 1/3 * torch.pi],
|
||||||
|
[0.0, 0.0, 0.0, -1/3 *torch.pi],
|
||||||
|
|
||||||
return total_loss, (loss_theta, loss_omega, loss_torque)
|
# Mix cases
|
||||||
|
[1/4 * torch.pi, 1 * torch.pi, 0.0, 0.0],
|
||||||
|
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 0.0],
|
||||||
|
[1/2 * torch.pi, -1 * torch.pi, 0.0, 1/3 * torch.pi],
|
||||||
|
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -1/3 *torch.pi],
|
||||||
|
[1/4 * torch.pi, 1 * torch.pi, 0.0, 2 * torch.pi],
|
||||||
|
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 2 * torch.pi],
|
||||||
|
[1/2 * torch.pi, -1 * torch.pi, 0.0, 4 * torch.pi],
|
||||||
|
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -4 *torch.pi],
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
], dtype=torch.float32, device=device)
|
||||||
# 4) Training Setup
|
|
||||||
# ----------------------------------------------------------------
|
|
||||||
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
|
|
||||||
|
|
||||||
# Create the controller and pendulum dynamics model
|
|
||||||
controller = PendulumController3D().to(device)
|
|
||||||
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
|
|
||||||
|
|
||||||
# Define optimizer
|
|
||||||
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
|
|
||||||
|
|
||||||
# Initial conditions: [theta, omega, alpha, tau_prev]
|
|
||||||
initial_conditions = [
|
|
||||||
[0.1, 0.0, 0.0, 0.0], # Small perturbation
|
|
||||||
[-0.5, 0.0, 0.0, 0.0],
|
|
||||||
[6.28, 6.28, 0.0, 0.0],
|
|
||||||
[1.57, 0.5, 0.0, 0.0],
|
|
||||||
[0.0, -6.28, 0.0, 0.0],
|
|
||||||
[1.57, -6.28, 0.0, 0.0],
|
|
||||||
]
|
|
||||||
|
|
||||||
# Convert to torch tensor (batch_size, 4)
|
|
||||||
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
|
|
||||||
|
|
||||||
# Time grid
|
# Time grid
|
||||||
t_span = torch.linspace(0, 10, 1000, device=device)
|
t_span = torch.linspace(0, 10, 1000, device=device)
|
||||||
|
|
||||||
num_epochs = 100_000
|
# Initialize controller and dynamics
|
||||||
|
controller = PendulumController().to(device)
|
||||||
|
pendulum_dynamics = PendulumDynamics(controller).to(device)
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
optimizer = optim.Adam(controller.parameters(), lr=1e-1, weight_decay=0)
|
||||||
|
|
||||||
|
# Training parameters
|
||||||
|
num_epochs = 10_000
|
||||||
print_every = 25
|
print_every = 25
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
|
||||||
# 5) Training Loop
|
|
||||||
# ----------------------------------------------------------------
|
|
||||||
for epoch in range(num_epochs):
|
for epoch in range(num_epochs):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
# Integrate the ODE
|
|
||||||
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
|
||||||
# state_traj shape: (time_steps, batch_size, 4)
|
loss = loss_fn(state_traj)
|
||||||
|
|
||||||
# Compute loss
|
if torch.isnan(loss):
|
||||||
total_loss, (l_theta, l_omega, l_torque) = loss_fn(state_traj, t_span)
|
|
||||||
|
|
||||||
# Check for NaN values
|
|
||||||
if torch.isnan(total_loss):
|
|
||||||
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
print(f"NaN detected at epoch {epoch}. Skipping step.")
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
continue # Skip this iteration
|
continue
|
||||||
|
|
||||||
# Backprop
|
loss.backward()
|
||||||
total_loss.backward()
|
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
# Print progress
|
|
||||||
if epoch % print_every == 0:
|
if epoch % print_every == 0:
|
||||||
print(f"Epoch {epoch:4d}/{num_epochs} | "
|
print(f"Epoch {epoch}/{num_epochs} | Loss: {loss.item():.6f}")
|
||||||
f"Total: {total_loss.item():.6f} | "
|
torch.save(controller.state_dict(), "controller_with_desired_theta.pth")
|
||||||
f"Theta: {l_theta.item():.6f} | "
|
print("Model saved as 'controller_with_desired_theta.pth'.")
|
||||||
f"Omega: {l_omega.item():.6f} | "
|
|
||||||
f"Torque: {l_torque.item():.6f}")
|
|
||||||
|
|
||||||
torch.save(controller.state_dict(), "controller_cpu_clamped_inverse_time_punish.pth")
|
|
||||||
print("Model saved as 'controller_cpu_clamped_inverse_time_punish.pth'.")
|
|
||||||
|
|||||||
330
validator.py
330
validator.py
@ -1,103 +1,174 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.integrate import solve_ivp
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
# Load Controller
|
||||||
# 1) 3D Controller: [theta, omega, alpha] -> torque
|
controller_file_name = "controller_with_desired_theta.pth"
|
||||||
# ----------------------------------------------------------------
|
|
||||||
class PendulumController3D(nn.Module):
|
class PendulumController(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(PendulumController3D, self).__init__()
|
super().__init__()
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
nn.Linear(3, 64),
|
nn.Linear(4, 64),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(64, 64),
|
nn.Linear(64, 64),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(64, 1)
|
nn.Linear(64, 1)
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x_3d):
|
def forward(self, x):
|
||||||
return self.net(x_3d)
|
return self.net(x)
|
||||||
|
|
||||||
# Load the trained 3D model
|
controller = PendulumController()
|
||||||
controller = PendulumController3D()
|
controller.load_state_dict(torch.load(controller_file_name))
|
||||||
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_punish.pth"))
|
|
||||||
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
|
|
||||||
controller.eval()
|
controller.eval()
|
||||||
print("3D Controller loaded.")
|
print(f"{controller_file_name} loaded.")
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
# Constants
|
||||||
# 2) ODE: State = [theta, omega, alpha].
|
|
||||||
# ----------------------------------------------------------------
|
|
||||||
m = 10.0
|
m = 10.0
|
||||||
g = 9.81
|
g = 9.81
|
||||||
R = 1.0
|
R = 1.0
|
||||||
|
|
||||||
def pendulum_ode_3d(t, state):
|
# Time step settings
|
||||||
|
dt = 0.01 # Fixed time step
|
||||||
|
T = 20.0 # Total simulation time
|
||||||
|
num_steps = int(T / dt)
|
||||||
|
t_eval = np.linspace(0, T, num_steps)
|
||||||
|
|
||||||
|
# Define ODE System (RK4) - Also Returns Torque
|
||||||
|
def pendulum_ode_step(state, dt, desired_theta):
|
||||||
theta, omega, alpha = state
|
theta, omega, alpha = state
|
||||||
|
|
||||||
|
def compute_torque(th, om, al):
|
||||||
# Evaluate NN -> torque
|
# Evaluate NN -> torque
|
||||||
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
|
inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
torque = controller(inp).item()
|
torque = controller(inp)
|
||||||
# Clamp torque to ±250 for consistency with training
|
torque = torch.clamp(torque, -250, 250)
|
||||||
torque = np.clip(torque, -250, 250)
|
return float(torque)
|
||||||
|
|
||||||
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
|
def derivatives(state, torque):
|
||||||
|
th, om, al = state
|
||||||
|
a = (g / R) * np.sin(th) + torque / (m * R**2)
|
||||||
|
return np.array([om, a, 0]) # dtheta, domega, dalpha
|
||||||
|
|
||||||
dtheta = omega
|
# Compute k1
|
||||||
domega = alpha
|
torque1 = compute_torque(theta, omega, alpha)
|
||||||
dalpha = alpha_des - alpha
|
k1 = dt * derivatives(state, torque1)
|
||||||
return [dtheta, domega, dalpha]
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------
|
# Compute k2
|
||||||
# 3) Validate for multiple initial conditions
|
state_k2 = state + 0.5 * k1
|
||||||
# ----------------------------------------------------------------
|
torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2])
|
||||||
initial_conditions_3d = [
|
k2 = dt * derivatives(state_k2, torque2)
|
||||||
(0.1, 0.0, 0.0),
|
|
||||||
(0.5, 0.0, 0.0),
|
# Compute k3
|
||||||
(1.0, 0.0, 0.0),
|
state_k3 = state + 0.5 * k2
|
||||||
(1.57, 0.5, 0.0),
|
torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2])
|
||||||
(0.0, -6.28, 0.0),
|
k3 = dt * derivatives(state_k3, torque3)
|
||||||
(6.28, 6.28, 0.0),
|
|
||||||
|
# Compute k4
|
||||||
|
state_k4 = state + k3
|
||||||
|
torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2])
|
||||||
|
k4 = dt * derivatives(state_k4, torque4)
|
||||||
|
|
||||||
|
# Update state using RK4 formula
|
||||||
|
new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0
|
||||||
|
|
||||||
|
# Compute weighted final torque
|
||||||
|
final_torque = (torque1 + 2*torque2 + 2*torque3 + torque4) / 6.0
|
||||||
|
|
||||||
|
return new_state, final_torque
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Run Simulations for Different Initial Conditions
|
||||||
|
# [theta0, omega0, alpha0, desired_theta]
|
||||||
|
in_sample_cases = [
|
||||||
|
# Theta perturbations
|
||||||
|
(1/6 * np.pi, 0.0, 0.0, 0.0),
|
||||||
|
(-1/6 * np.pi, 0.0, 0.0, 0.0),
|
||||||
|
(2/3 * np.pi, 0.0, 0.0, 0.0),
|
||||||
|
(-2/3 * np.pi, 0.0, 0.0, 0.0),
|
||||||
|
|
||||||
|
# Omega perturbations
|
||||||
|
(0.0, 1/3 * np.pi, 0.0, 0.0),
|
||||||
|
(0.0, -1/3 * np.pi, 0.0, 0.0),
|
||||||
|
(0.0, 2 * np.pi, 0.0, 0.0),
|
||||||
|
(0.0, -2 * np.pi, 0.0, 0.0),
|
||||||
|
|
||||||
|
# Return to non-zero theta
|
||||||
|
(0.0, 0.0, 0.0, 2*np.pi),
|
||||||
|
(0.0, 0.0, 0.0, -2*np.pi),
|
||||||
|
(0.0, 0.0, 0.0, 1/2 * np.pi),
|
||||||
|
(0.0, 0.0, 0.0, -1/2 *np.pi),
|
||||||
|
(0.0, 0.0, 0.0, 1/3 * np.pi),
|
||||||
|
(0.0, 0.0, 0.0, -1/3 *np.pi),
|
||||||
|
|
||||||
|
# Mix cases
|
||||||
|
(1/4 * np.pi, 1 * np.pi, 0.0, 0.0),
|
||||||
|
(-1/4 * np.pi, -1 * np.pi, 0.0, 0.0),
|
||||||
|
(1/2 * np.pi, -1 * np.pi, 0.0, 1/3 * np.pi),
|
||||||
|
(-1/2 * np.pi, 1 * np.pi, 0.0, -1/3 *np.pi),
|
||||||
|
(1/4 * np.pi, 1 * np.pi, 0.0, 2 * np.pi),
|
||||||
|
(-1/4 * np.pi, -1 * np.pi, 0.0, 2 * np.pi),
|
||||||
|
(1/2 * np.pi, -1 * np.pi, 0.0, 4 * np.pi),
|
||||||
|
(-1/2 * np.pi, 1 * np.pi, 0.0, -4 *np.pi),
|
||||||
]
|
]
|
||||||
|
|
||||||
t_span = (0, 20)
|
# Validation in-sample cases
|
||||||
t_eval = np.linspace(0, 20, 2000)
|
print("Performing in-sample validation")
|
||||||
|
|
||||||
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
losses = []
|
||||||
sol = solve_ivp(
|
final_thetas = []
|
||||||
pendulum_ode_3d,
|
|
||||||
t_span,
|
|
||||||
[theta0, omega0, alpha0],
|
|
||||||
t_eval=t_eval,
|
|
||||||
method='RK45'
|
|
||||||
)
|
|
||||||
|
|
||||||
t = sol.t
|
for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(in_sample_cases):
|
||||||
theta = sol.y[0]
|
state = np.array([theta0, omega0, alpha0])
|
||||||
omega = sol.y[1]
|
|
||||||
alpha_arr = sol.y[2]
|
|
||||||
|
|
||||||
# Recompute torque over time
|
theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], []
|
||||||
torques = []
|
|
||||||
alpha_des_vals = []
|
|
||||||
for (th, om, al) in zip(theta, omega, alpha_arr):
|
|
||||||
with torch.no_grad():
|
|
||||||
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
|
|
||||||
torque_val = np.clip(torque_val, -250, 250)
|
|
||||||
torques.append(torque_val)
|
|
||||||
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
|
|
||||||
torques = np.array(torques)
|
|
||||||
|
|
||||||
# Plot
|
for _ in range(num_steps):
|
||||||
|
# Save values
|
||||||
|
theta_vals.append(state[0])
|
||||||
|
omega_vals.append(state[1])
|
||||||
|
alpha_vals.append(state[2])
|
||||||
|
|
||||||
|
# Compute ODE step with real state
|
||||||
|
state, torque = pendulum_ode_step(state, dt, desired_theta)
|
||||||
|
|
||||||
|
# Store torque
|
||||||
|
torque_vals.append(torque)
|
||||||
|
|
||||||
|
# Convert lists to arrays
|
||||||
|
theta_vals = np.array(theta_vals)
|
||||||
|
omega_vals = np.array(omega_vals)
|
||||||
|
alpha_vals = np.array(alpha_vals)
|
||||||
|
torque_vals = np.array(torque_vals)
|
||||||
|
|
||||||
|
# Get the final theta of the system at t=t_final
|
||||||
|
final_theta = theta_vals[-1]
|
||||||
|
final_thetas.append(final_theta)
|
||||||
|
|
||||||
|
# Calculate this specific condition's loss
|
||||||
|
loss = 1e3 * np.mean((theta_vals - desired_theta)**2)
|
||||||
|
losses.append(loss)
|
||||||
|
|
||||||
|
# Plot Results
|
||||||
fig, ax1 = plt.subplots(figsize=(10, 6))
|
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||||
ax1.plot(t, theta, label="theta", color="blue")
|
ax1.plot(t_eval, theta_vals, label="theta", color="blue")
|
||||||
ax1.plot(t, omega, label="omega", color="green")
|
ax1.plot(t_eval, omega_vals, label="omega", color="green")
|
||||||
ax1.plot(t, alpha_arr, label="alpha", color="red")
|
ax1.plot(t_eval, alpha_vals, label="alpha", color="red")
|
||||||
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
|
ax1.axhline(desired_theta, label="Desired Theta", color="black")
|
||||||
|
|
||||||
|
# Draw horizontal lines at theta = 2n*pi (as many as fit within range)
|
||||||
|
y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals))
|
||||||
|
y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals))
|
||||||
|
|
||||||
|
n_min = int(np.ceil(y_min / (2 * np.pi)))
|
||||||
|
n_max = int(np.floor(y_max / (2 * np.pi)))
|
||||||
|
theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)]
|
||||||
|
|
||||||
ax1.set_xlabel("time [s]")
|
ax1.set_xlabel("time [s]")
|
||||||
ax1.set_ylabel("theta, omega, alpha")
|
ax1.set_ylabel("theta, omega, alpha")
|
||||||
@ -105,12 +176,133 @@ for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
|
|||||||
ax1.legend(loc="upper left")
|
ax1.legend(loc="upper left")
|
||||||
|
|
||||||
ax2 = ax1.twinx()
|
ax2 = ax1.twinx()
|
||||||
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
|
ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--")
|
||||||
ax2.set_ylabel("Torque [Nm]")
|
ax2.set_ylabel("Torque [Nm]")
|
||||||
ax2.legend(loc="upper right")
|
ax2.legend(loc="upper right")
|
||||||
|
|
||||||
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.savefig(f"{idx+1}_validation.png")
|
|
||||||
|
filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png"
|
||||||
|
plt.savefig(f"validation/in-sample/{filename}")
|
||||||
plt.close()
|
plt.close()
|
||||||
print(f"Saved {idx+1}_validation.png")
|
|
||||||
|
print(f"Saved in-sample validation case {idx+1}")
|
||||||
|
|
||||||
|
# Create a DataFrame for tabular representation
|
||||||
|
df_losses = pd.DataFrame(in_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"])
|
||||||
|
df_losses["final_theta"] = final_theta
|
||||||
|
df_losses["loss"] = losses
|
||||||
|
|
||||||
|
# Add run # column
|
||||||
|
df_losses.insert(0, "Run #", range(1, len(in_sample_cases) + 1))
|
||||||
|
|
||||||
|
# Print the table
|
||||||
|
print(df_losses.to_string(index=False))
|
||||||
|
|
||||||
|
|
||||||
|
# Out-of-sample validation
|
||||||
|
print("\nPerforming out-of-sample validation")
|
||||||
|
|
||||||
|
# Out of sample cases previously generated by numpy
|
||||||
|
out_sample_cases = [
|
||||||
|
(-2.198958, -4.428501, 0.450833, 0.000000),
|
||||||
|
(1.714196, -0.769896, 0.202738, 0.000000),
|
||||||
|
(0.241195, -5.493715, 0.438996, 0.000000),
|
||||||
|
(0.030605, 4.901513, -0.479243, 0.000000),
|
||||||
|
(1.930445, -1.301926, -0.454050, 0.000000),
|
||||||
|
(-0.676063, 4.246865, 0.036303, 0.000000),
|
||||||
|
(0.734920, -5.925202, 0.047097, 0.000000),
|
||||||
|
(-3.074471, -3.535424, 0.315438, 0.000000),
|
||||||
|
(-0.094486, 6.111091, 0.150525, 0.000000),
|
||||||
|
(-1.647671, 5.720526, 0.334181, 0.000000),
|
||||||
|
(-2.611260, 5.087704, 0.045460, -3.610785),
|
||||||
|
(1.654137, 0.982081, -0.192725, 1.003872),
|
||||||
|
(-2.394899, 3.550547, -0.430938, 3.261897),
|
||||||
|
(0.474917, 0.555166, -0.285173, 1.866752),
|
||||||
|
(-0.640369, -4.678490, -0.340663, 3.150098),
|
||||||
|
(1.747517, -3.248204, -0.001520, 1.221787),
|
||||||
|
(2.505283, -2.875006, -0.065617, -3.690269),
|
||||||
|
(1.337244, 2.221707, 0.044979, -2.459730),
|
||||||
|
(1.531012, 2.230981, -0.291206, -1.924535),
|
||||||
|
(-1.065792, 4.320740, 0.075405, -1.550644),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(out_sample_cases):
|
||||||
|
state = np.array([theta0, omega0, alpha0])
|
||||||
|
|
||||||
|
theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], []
|
||||||
|
|
||||||
|
for _ in range(num_steps):
|
||||||
|
# Save values
|
||||||
|
theta_vals.append(state[0])
|
||||||
|
omega_vals.append(state[1])
|
||||||
|
alpha_vals.append(state[2])
|
||||||
|
|
||||||
|
# Compute ODE step with real state
|
||||||
|
state, torque = pendulum_ode_step(state, dt, desired_theta)
|
||||||
|
|
||||||
|
# Store torque
|
||||||
|
torque_vals.append(torque)
|
||||||
|
|
||||||
|
# Convert lists to arrays
|
||||||
|
theta_vals = np.array(theta_vals)
|
||||||
|
omega_vals = np.array(omega_vals)
|
||||||
|
alpha_vals = np.array(alpha_vals)
|
||||||
|
torque_vals = np.array(torque_vals)
|
||||||
|
|
||||||
|
# Get the final theta of the system at t=t_final
|
||||||
|
final_theta = theta_vals[-1]
|
||||||
|
final_thetas.append(final_theta)
|
||||||
|
|
||||||
|
# Calculate this specific condition's loss
|
||||||
|
loss = 1e3 * np.mean((theta_vals - desired_theta)**2)
|
||||||
|
losses.append(loss)
|
||||||
|
|
||||||
|
# Plot Results
|
||||||
|
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||||
|
ax1.plot(t_eval, theta_vals, label="theta", color="blue")
|
||||||
|
ax1.plot(t_eval, omega_vals, label="omega", color="green")
|
||||||
|
ax1.plot(t_eval, alpha_vals, label="alpha", color="red")
|
||||||
|
ax1.axhline(desired_theta, label="Desired Theta", color="black")
|
||||||
|
|
||||||
|
# Draw horizontal lines at theta = 2n*pi (as many as fit within range)
|
||||||
|
y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals))
|
||||||
|
y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals))
|
||||||
|
|
||||||
|
n_min = int(np.ceil(y_min / (2 * np.pi)))
|
||||||
|
n_max = int(np.floor(y_max / (2 * np.pi)))
|
||||||
|
theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)]
|
||||||
|
|
||||||
|
ax1.set_xlabel("time [s]")
|
||||||
|
ax1.set_ylabel("theta, omega, alpha")
|
||||||
|
ax1.grid(True)
|
||||||
|
ax1.legend(loc="upper left")
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--")
|
||||||
|
ax2.set_ylabel("Torque [Nm]")
|
||||||
|
ax2.legend(loc="upper right")
|
||||||
|
|
||||||
|
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png"
|
||||||
|
plt.savefig(f"validation/out-of-sample/{filename}")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
print(f"Saved out-of-sample validation case {idx+1}")
|
||||||
|
|
||||||
|
|
||||||
|
# Create a DataFrame for tabular representation
|
||||||
|
df_losses = pd.DataFrame(out_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"])
|
||||||
|
df_losses["final_theta"] = final_theta
|
||||||
|
df_losses["loss"] = losses
|
||||||
|
|
||||||
|
# Add run # column
|
||||||
|
df_losses.insert(0, "Run #", range(1, len(out_sample_cases) + 1))
|
||||||
|
|
||||||
|
# Print the table
|
||||||
|
print(df_losses.to_string(index=False))
|
||||||
Loading…
Reference in New Issue
Block a user