Adding 'desired_theta' as neural network input

This commit is contained in:
judsonupchurch 2025-02-03 22:28:41 +00:00
parent 1b7b40adbc
commit cdefc00226
11 changed files with 629 additions and 189 deletions

8
check_for_cuda.py Normal file
View File

@ -0,0 +1,8 @@
import torch
if torch.cuda.is_available():
print("CUDA is available")
print("Number of CUDA devices:", torch.cuda.device_count())
print("Device name:", torch.cuda.get_device_name(0))
else:
print("CUDA is not available")

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

View File

@ -0,0 +1,161 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torchdiffeq import odeint
import numpy as np
import matplotlib.pyplot as plt
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
"""
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
Returns shape: (batch_size, 1) => torque.
"""
raw_torque = self.net(x_3d)
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
return clamped_torque
# ----------------------------------------------------------------
# 2) Define ODE System Using `odeint`
# ----------------------------------------------------------------
m = 10.0
g = 9.81
R = 1.0
class PendulumDynamics3D(nn.Module):
"""
Defines the ODE system for [theta, omega, alpha] with torque tracking.
"""
def __init__(self, controller):
super().__init__()
self.controller = controller
def forward(self, t, state):
"""
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
"""
theta = state[:, 0]
omega = state[:, 1]
alpha = state[:, 2]
tau_prev = state[:, 3]
# Create tensor input for controller: [theta, omega, alpha]
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
# Compute torque using the controller
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
# Compute desired alpha
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
# Define ODE system
dtheta = omega
domega = alpha
dalpha = alpha_desired - alpha # Relaxation term
dtau = tau - tau_prev # Keep track of torque evolution
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
# ----------------------------------------------------------------
# 3) Loss Function
# ----------------------------------------------------------------
def loss_fn(state_traj, t_span):
"""
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
Args:
state_traj: Tensor of shape (time_steps, batch_size, 4).
t_span: Tensor of time steps (time_steps,).
Returns:
total_loss, (loss_theta, loss_omega)
"""
theta = state_traj[:, :, 0] # (time_steps, batch_size)
loss_theta = 1e3 * torch.mean(theta**2)
# Combine the losses
total_loss = loss_theta
return total_loss, (loss_theta)
# ----------------------------------------------------------------
# 4) Training Setup
# ----------------------------------------------------------------
device = torch.device("cpu")
# Create the controller and pendulum dynamics model
controller = PendulumController3D().to(device)
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
# Define optimizer
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
# Initial conditions: [theta, omega, alpha, tau_prev]
initial_conditions = [
[0.1, 0.0, 0.0, 0.0], # Small perturbation
[-0.5, 0.0, 0.0, 0.0],
[6.28, 6.28, 0.0, 0.0],
[1.57, 0.5, 0.0, 0.0],
[0.0, -6.28, 0.0, 0.0],
[1.57, -6.28, 0.0, 0.0],
]
# Convert to torch tensor (batch_size, 4)
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
# Time grid
t_span = torch.linspace(0, 10, 200, device=device)
num_epochs = 100_000
print_every = 25
# ----------------------------------------------------------------
# 5) Training Loop
# ----------------------------------------------------------------
for epoch in range(num_epochs):
optimizer.zero_grad()
# Integrate the ODE
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
# state_traj shape: (time_steps, batch_size, 4)
# Compute loss
total_loss, (l_theta) = loss_fn(state_traj, t_span)
# Check for NaN values
if torch.isnan(total_loss):
print(f"NaN detected at epoch {epoch}. Skipping step.")
optimizer.zero_grad()
continue # Skip this iteration
# Backprop
total_loss.backward()
optimizer.step()
# Print progress
if epoch % print_every == 0:
print(f"Epoch {epoch:4d}/{num_epochs} | "
f"Total: {total_loss.item():.6f} | "
f"Theta: {l_theta.item():.6f}")
torch.save(controller.state_dict(), "controller_cpu_clamped_no_time_penalty.pth")
print("Model saved as 'controller_cpu_clamped_no_time_penalty.pth'.")

View File

@ -0,0 +1,118 @@
import torch
import torch.nn as nn
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
controller_file_name = "controller_cpu_clamped_no_time_penalty.pth"
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
def __init__(self):
super(PendulumController3D, self).__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
return self.net(x_3d)
# Load the trained 3D model
controller = PendulumController3D()
controller.load_state_dict(torch.load(controller_file_name))
controller.eval()
print(f"{controller_file_name} loaded.")
# ----------------------------------------------------------------
# 2) ODE: State = [theta, omega, alpha].
# ----------------------------------------------------------------
m = 10.0
g = 9.81
R = 1.0
def pendulum_ode_3d(t, state):
theta, omega, alpha = state
# Evaluate NN -> torque
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp).item()
# Clamp torque to ±250 for consistency with training
torque = np.clip(torque, -250, 250)
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
dtheta = omega
domega = alpha
dalpha = alpha_des - alpha
return [dtheta, domega, dalpha]
# ----------------------------------------------------------------
# 3) Validate for multiple initial conditions
# ----------------------------------------------------------------
initial_conditions_3d = [
(0.1, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.0),
(1.57, 0.5, 0.0),
(0.0, -6.28, 0.0),
(6.28, 6.28, 0.0),
]
t_span = (0, 20)
t_eval = np.linspace(0, 20, 2000)
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
sol = solve_ivp(
pendulum_ode_3d,
t_span,
[theta0, omega0, alpha0],
t_eval=t_eval,
method='RK45'
)
t = sol.t
theta = sol.y[0]
omega = sol.y[1]
alpha_arr = sol.y[2]
# Recompute torque over time
torques = []
alpha_des_vals = []
for (th, om, al) in zip(theta, omega, alpha_arr):
with torch.no_grad():
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
torque_val = np.clip(torque_val, -250, 250)
torques.append(torque_val)
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
torques = np.array(torques)
# Plot
fig, ax1 = plt.subplots(figsize=(10,6))
ax1.plot(t, theta, label="theta", color="blue")
ax1.plot(t, omega, label="omega", color="green")
ax1.plot(t, alpha_arr, label="alpha", color="red")
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
ax1.set_xlabel("time [s]")
ax1.set_ylabel("theta, omega, alpha")
ax1.grid(True)
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
ax2.set_ylabel("Torque [Nm]")
ax2.legend(loc="upper right")
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
plt.tight_layout()
plt.savefig(f"{idx+1}_validation.png")
plt.close()
print(f"Saved {idx+1}_validation.png")

View File

@ -3,173 +3,134 @@ import torch.nn as nn
import torch.optim as optim
from torchdiffeq import odeint
import numpy as np
import matplotlib.pyplot as plt
import random
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
# Generate a random seed
random_seed = random.randint(0, 10000)
# Set the seeds for reproducibility
torch.manual_seed(random_seed)
np.random.seed(random_seed)
# Print the chosen random seed
print(f"Random seed for torch and numpy: {random_seed}")
class PendulumController(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.Linear(4, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
"""
x_4d: shape (batch_size, 4) => [theta, cos(theta), omega, alpha].
Returns shape: (batch_size, 1) => torque.
"""
raw_torque = self.net(x_3d)
clamped_torque = torch.clamp(raw_torque, -250, 250) # Clamp torque within [-250, 250]
return clamped_torque
def forward(self, x):
raw_torque = self.net(x)
return torch.clamp(raw_torque, -250, 250) # Clamp torque
# ----------------------------------------------------------------
# 2) Define ODE System Using `odeint`
# ----------------------------------------------------------------
# Constants
m = 10.0
g = 9.81
R = 1.0
class PendulumDynamics3D(nn.Module):
"""
Defines the ODE system for [theta, omega, alpha] with torque tracking.
"""
class PendulumDynamics(nn.Module):
def __init__(self, controller):
super().__init__()
self.controller = controller
def forward(self, t, state):
"""
state: (batch_size, 4) => [theta, omega, alpha, tau_prev]
Returns: (batch_size, 4) => [dtheta/dt, domega/dt, dalpha/dt, dtau/dt]
"""
theta = state[:, 0]
omega = state[:, 1]
alpha = state[:, 2]
tau_prev = state[:, 3]
desired_theta = state[:, 3] # Extract desired theta
# Pass desired_theta as input to the controller
input = torch.stack([theta, omega, alpha, desired_theta], dim=1)
tau = self.controller(input).squeeze(-1)
# Create tensor input for controller: [theta, omega, alpha]
input_3d = torch.stack([theta, omega, alpha], dim=1) # shape (batch_size, 3)
# Compute torque using the controller
tau = self.controller(input_3d).squeeze(-1) # shape (batch_size,)
# Compute desired alpha
alpha_desired = (g / R) * torch.sin(theta) + tau / (m * R**2)
# Define ODE system
dtheta = omega
domega = alpha
dalpha = alpha_desired - alpha # Relaxation term
dtau = tau - tau_prev # Keep track of torque evolution
dalpha = alpha_desired - alpha
return torch.stack([dtheta, domega, dalpha, dtau], dim=1) # (batch_size, 4)
return torch.stack([dtheta, domega, dalpha, torch.zeros_like(desired_theta)], dim=1)
# ----------------------------------------------------------------
# 3) Loss Function
# ----------------------------------------------------------------
def loss_fn(state_traj, t_span):
"""
Computes loss based on the trajectory with inverse time weighting (1/t) for theta and omega.
def loss_fn(state_traj):
theta = state_traj[:, :, 0] # Extract theta
desired_theta = state_traj[:, :, 3] # Extract desired theta
Args:
state_traj: Tensor of shape (time_steps, batch_size, 4).
t_span: Tensor of time steps (time_steps,).
loss_theta = 1e3 * torch.mean((theta - desired_theta)**2)
return loss_theta
Returns:
total_loss, (loss_theta, loss_omega)
"""
theta = state_traj[:, :, 0] # (time_steps, batch_size)
omega = state_traj[:, :, 1] # (time_steps, batch_size)
torque = state_traj[:, :, 3]
# Device setup
device = torch.device("cpu")
# Inverse time weights w(t) = 1 / t
# Add a small epsilon to avoid division by zero
epsilon = 1e-6
inverse_time_weights = 1.0 / (t_span + epsilon).unsqueeze(1) # Shape: (time_steps, 1)
linear_time_weights = t_span.unsqueeze(1)
# Initial conditions (theta0, omega0, alpha0, desired_theta)
state_0 = torch.tensor([
# Theta perturbations
[1/6 * torch.pi, 0.0, 0.0, 0.0],
[-1/6 * torch.pi, 0.0, 0.0, 0.0],
[2/3 * torch.pi, 0.0, 0.0, 0.0],
[-2/3 * torch.pi, 0.0, 0.0, 0.0],
# Apply inverse time weighting for theta and omega
loss_theta = 1e-1 * torch.mean(inverse_time_weights * theta**2) # Weighted theta loss
loss_omega = 1e-2 * torch.mean(inverse_time_weights * omega**2) # Weighted omega loss
loss_torque = 1e-2 * torch.mean(linear_time_weights * torque**2)
# Omega perturbations
[0.0, 1/3 * torch.pi, 0.0, 0.0],
[0.0, -1/3 * torch.pi, 0.0, 0.0],
[0.0, 2 * torch.pi, 0.0, 0.0],
[0.0, -2 * torch.pi, 0.0, 0.0],
# Combine the losses
total_loss = loss_theta #+ loss_torque
# Return to non-zero theta
[0.0, 0.0, 0.0, 2*torch.pi],
[0.0, 0.0, 0.0, -2*torch.pi],
[0.0, 0.0, 0.0, 1/2 * torch.pi],
[0.0, 0.0, 0.0, -1/2 *torch.pi],
[0.0, 0.0, 0.0, 1/3 * torch.pi],
[0.0, 0.0, 0.0, -1/3 *torch.pi],
return total_loss, (loss_theta, loss_omega, loss_torque)
# Mix cases
[1/4 * torch.pi, 1 * torch.pi, 0.0, 0.0],
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 0.0],
[1/2 * torch.pi, -1 * torch.pi, 0.0, 1/3 * torch.pi],
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -1/3 *torch.pi],
[1/4 * torch.pi, 1 * torch.pi, 0.0, 2 * torch.pi],
[-1/4 * torch.pi, -1 * torch.pi, 0.0, 2 * torch.pi],
[1/2 * torch.pi, -1 * torch.pi, 0.0, 4 * torch.pi],
[-1/2 * torch.pi, 1 * torch.pi, 0.0, -4 *torch.pi],
# ----------------------------------------------------------------
# 4) Training Setup
# ----------------------------------------------------------------
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
# Create the controller and pendulum dynamics model
controller = PendulumController3D().to(device)
pendulum_dynamics = PendulumDynamics3D(controller).to(device)
# Define optimizer
optimizer = optim.Adam(controller.parameters(), lr=1e-1)
# Initial conditions: [theta, omega, alpha, tau_prev]
initial_conditions = [
[0.1, 0.0, 0.0, 0.0], # Small perturbation
[-0.5, 0.0, 0.0, 0.0],
[6.28, 6.28, 0.0, 0.0],
[1.57, 0.5, 0.0, 0.0],
[0.0, -6.28, 0.0, 0.0],
[1.57, -6.28, 0.0, 0.0],
]
# Convert to torch tensor (batch_size, 4)
state_0 = torch.tensor(initial_conditions, dtype=torch.float32, device=device)
], dtype=torch.float32, device=device)
# Time grid
t_span = torch.linspace(0, 10, 1000, device=device)
num_epochs = 100_000
# Initialize controller and dynamics
controller = PendulumController().to(device)
pendulum_dynamics = PendulumDynamics(controller).to(device)
# Optimizer
optimizer = optim.Adam(controller.parameters(), lr=1e-1, weight_decay=0)
# Training parameters
num_epochs = 10_000
print_every = 25
# ----------------------------------------------------------------
# 5) Training Loop
# ----------------------------------------------------------------
for epoch in range(num_epochs):
optimizer.zero_grad()
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
loss = loss_fn(state_traj)
# Integrate the ODE
state_traj = odeint(pendulum_dynamics, state_0, t_span, method='rk4')
# state_traj shape: (time_steps, batch_size, 4)
# Compute loss
total_loss, (l_theta, l_omega, l_torque) = loss_fn(state_traj, t_span)
# Check for NaN values
if torch.isnan(total_loss):
if torch.isnan(loss):
print(f"NaN detected at epoch {epoch}. Skipping step.")
optimizer.zero_grad()
continue # Skip this iteration
continue
# Backprop
total_loss.backward()
loss.backward()
optimizer.step()
# Print progress
if epoch % print_every == 0:
print(f"Epoch {epoch:4d}/{num_epochs} | "
f"Total: {total_loss.item():.6f} | "
f"Theta: {l_theta.item():.6f} | "
f"Omega: {l_omega.item():.6f} | "
f"Torque: {l_torque.item():.6f}")
torch.save(controller.state_dict(), "controller_cpu_clamped_inverse_time_punish.pth")
print("Model saved as 'controller_cpu_clamped_inverse_time_punish.pth'.")
print(f"Epoch {epoch}/{num_epochs} | Loss: {loss.item():.6f}")
torch.save(controller.state_dict(), "controller_with_desired_theta.pth")
print("Model saved as 'controller_with_desired_theta.pth'.")

View File

@ -1,103 +1,174 @@
import torch
import torch.nn as nn
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
import pandas as pd
# ----------------------------------------------------------------
# 1) 3D Controller: [theta, omega, alpha] -> torque
# ----------------------------------------------------------------
class PendulumController3D(nn.Module):
# Load Controller
controller_file_name = "controller_with_desired_theta.pth"
class PendulumController(nn.Module):
def __init__(self):
super(PendulumController3D, self).__init__()
super().__init__()
self.net = nn.Sequential(
nn.Linear(3, 64),
nn.Linear(4, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x_3d):
return self.net(x_3d)
def forward(self, x):
return self.net(x)
# Load the trained 3D model
controller = PendulumController3D()
controller.load_state_dict(torch.load("controller_cpu_clamped_inverse_time_punish.pth"))
# controller.load_state_dict(torch.load("controller_cpu_clamped.pth"))
controller = PendulumController()
controller.load_state_dict(torch.load(controller_file_name))
controller.eval()
print("3D Controller loaded.")
print(f"{controller_file_name} loaded.")
# ----------------------------------------------------------------
# 2) ODE: State = [theta, omega, alpha].
# ----------------------------------------------------------------
# Constants
m = 10.0
g = 9.81
R = 1.0
def pendulum_ode_3d(t, state):
# Time step settings
dt = 0.01 # Fixed time step
T = 20.0 # Total simulation time
num_steps = int(T / dt)
t_eval = np.linspace(0, T, num_steps)
# Define ODE System (RK4) - Also Returns Torque
def pendulum_ode_step(state, dt, desired_theta):
theta, omega, alpha = state
# Evaluate NN -> torque
inp = torch.tensor([[theta, omega, alpha]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp).item()
# Clamp torque to ±250 for consistency with training
torque = np.clip(torque, -250, 250)
def compute_torque(th, om, al):
# Evaluate NN -> torque
inp = torch.tensor([[th, om, al, desired_theta]], dtype=torch.float32)
with torch.no_grad():
torque = controller(inp)
torque = torch.clamp(torque, -250, 250)
return float(torque)
alpha_des = (g/R)*np.sin(theta) + torque/(m*(R**2))
def derivatives(state, torque):
th, om, al = state
a = (g / R) * np.sin(th) + torque / (m * R**2)
return np.array([om, a, 0]) # dtheta, domega, dalpha
dtheta = omega
domega = alpha
dalpha = alpha_des - alpha
return [dtheta, domega, dalpha]
# Compute k1
torque1 = compute_torque(theta, omega, alpha)
k1 = dt * derivatives(state, torque1)
# ----------------------------------------------------------------
# 3) Validate for multiple initial conditions
# ----------------------------------------------------------------
initial_conditions_3d = [
(0.1, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.0),
(1.57, 0.5, 0.0),
(0.0, -6.28, 0.0),
(6.28, 6.28, 0.0),
# Compute k2
state_k2 = state + 0.5 * k1
torque2 = compute_torque(state_k2[0], state_k2[1], state_k2[2])
k2 = dt * derivatives(state_k2, torque2)
# Compute k3
state_k3 = state + 0.5 * k2
torque3 = compute_torque(state_k3[0], state_k3[1], state_k3[2])
k3 = dt * derivatives(state_k3, torque3)
# Compute k4
state_k4 = state + k3
torque4 = compute_torque(state_k4[0], state_k4[1], state_k4[2])
k4 = dt * derivatives(state_k4, torque4)
# Update state using RK4 formula
new_state = state + (k1 + 2*k2 + 2*k3 + k4) / 6.0
# Compute weighted final torque
final_torque = (torque1 + 2*torque2 + 2*torque3 + torque4) / 6.0
return new_state, final_torque
# Run Simulations for Different Initial Conditions
# [theta0, omega0, alpha0, desired_theta]
in_sample_cases = [
# Theta perturbations
(1/6 * np.pi, 0.0, 0.0, 0.0),
(-1/6 * np.pi, 0.0, 0.0, 0.0),
(2/3 * np.pi, 0.0, 0.0, 0.0),
(-2/3 * np.pi, 0.0, 0.0, 0.0),
# Omega perturbations
(0.0, 1/3 * np.pi, 0.0, 0.0),
(0.0, -1/3 * np.pi, 0.0, 0.0),
(0.0, 2 * np.pi, 0.0, 0.0),
(0.0, -2 * np.pi, 0.0, 0.0),
# Return to non-zero theta
(0.0, 0.0, 0.0, 2*np.pi),
(0.0, 0.0, 0.0, -2*np.pi),
(0.0, 0.0, 0.0, 1/2 * np.pi),
(0.0, 0.0, 0.0, -1/2 *np.pi),
(0.0, 0.0, 0.0, 1/3 * np.pi),
(0.0, 0.0, 0.0, -1/3 *np.pi),
# Mix cases
(1/4 * np.pi, 1 * np.pi, 0.0, 0.0),
(-1/4 * np.pi, -1 * np.pi, 0.0, 0.0),
(1/2 * np.pi, -1 * np.pi, 0.0, 1/3 * np.pi),
(-1/2 * np.pi, 1 * np.pi, 0.0, -1/3 *np.pi),
(1/4 * np.pi, 1 * np.pi, 0.0, 2 * np.pi),
(-1/4 * np.pi, -1 * np.pi, 0.0, 2 * np.pi),
(1/2 * np.pi, -1 * np.pi, 0.0, 4 * np.pi),
(-1/2 * np.pi, 1 * np.pi, 0.0, -4 *np.pi),
]
t_span = (0, 20)
t_eval = np.linspace(0, 20, 2000)
# Validation in-sample cases
print("Performing in-sample validation")
for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
sol = solve_ivp(
pendulum_ode_3d,
t_span,
[theta0, omega0, alpha0],
t_eval=t_eval,
method='RK45'
)
losses = []
final_thetas = []
t = sol.t
theta = sol.y[0]
omega = sol.y[1]
alpha_arr = sol.y[2]
for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(in_sample_cases):
state = np.array([theta0, omega0, alpha0])
# Recompute torque over time
torques = []
alpha_des_vals = []
for (th, om, al) in zip(theta, omega, alpha_arr):
with torch.no_grad():
torque_val = controller(torch.tensor([[th, om, al]], dtype=torch.float32)).item()
torque_val = np.clip(torque_val, -250, 250)
torques.append(torque_val)
alpha_des_vals.append( (g/R)*np.sin(th) + torque_val/(m*(R**2)) )
torques = np.array(torques)
theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], []
# Plot
fig, ax1 = plt.subplots(figsize=(10,6))
ax1.plot(t, theta, label="theta", color="blue")
ax1.plot(t, omega, label="omega", color="green")
ax1.plot(t, alpha_arr, label="alpha", color="red")
# optional: ax1.plot(t, alpha_des_vals, label="alpha_des", color="red", linestyle="--")
for _ in range(num_steps):
# Save values
theta_vals.append(state[0])
omega_vals.append(state[1])
alpha_vals.append(state[2])
# Compute ODE step with real state
state, torque = pendulum_ode_step(state, dt, desired_theta)
# Store torque
torque_vals.append(torque)
# Convert lists to arrays
theta_vals = np.array(theta_vals)
omega_vals = np.array(omega_vals)
alpha_vals = np.array(alpha_vals)
torque_vals = np.array(torque_vals)
# Get the final theta of the system at t=t_final
final_theta = theta_vals[-1]
final_thetas.append(final_theta)
# Calculate this specific condition's loss
loss = 1e3 * np.mean((theta_vals - desired_theta)**2)
losses.append(loss)
# Plot Results
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.plot(t_eval, theta_vals, label="theta", color="blue")
ax1.plot(t_eval, omega_vals, label="omega", color="green")
ax1.plot(t_eval, alpha_vals, label="alpha", color="red")
ax1.axhline(desired_theta, label="Desired Theta", color="black")
# Draw horizontal lines at theta = 2n*pi (as many as fit within range)
y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals))
y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals))
n_min = int(np.ceil(y_min / (2 * np.pi)))
n_max = int(np.floor(y_max / (2 * np.pi)))
theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)]
ax1.set_xlabel("time [s]")
ax1.set_ylabel("theta, omega, alpha")
@ -105,12 +176,133 @@ for idx, (theta0, omega0, alpha0) in enumerate(initial_conditions_3d):
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.plot(t, torques, label="torque", color="purple", linestyle="--")
ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--")
ax2.set_ylabel("Torque [Nm]")
ax2.legend(loc="upper right")
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
plt.tight_layout()
plt.savefig(f"{idx+1}_validation.png")
filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png"
plt.savefig(f"validation/in-sample/{filename}")
plt.close()
print(f"Saved {idx+1}_validation.png")
print(f"Saved in-sample validation case {idx+1}")
# Create a DataFrame for tabular representation
df_losses = pd.DataFrame(in_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"])
df_losses["final_theta"] = final_theta
df_losses["loss"] = losses
# Add run # column
df_losses.insert(0, "Run #", range(1, len(in_sample_cases) + 1))
# Print the table
print(df_losses.to_string(index=False))
# Out-of-sample validation
print("\nPerforming out-of-sample validation")
# Out of sample cases previously generated by numpy
out_sample_cases = [
(-2.198958, -4.428501, 0.450833, 0.000000),
(1.714196, -0.769896, 0.202738, 0.000000),
(0.241195, -5.493715, 0.438996, 0.000000),
(0.030605, 4.901513, -0.479243, 0.000000),
(1.930445, -1.301926, -0.454050, 0.000000),
(-0.676063, 4.246865, 0.036303, 0.000000),
(0.734920, -5.925202, 0.047097, 0.000000),
(-3.074471, -3.535424, 0.315438, 0.000000),
(-0.094486, 6.111091, 0.150525, 0.000000),
(-1.647671, 5.720526, 0.334181, 0.000000),
(-2.611260, 5.087704, 0.045460, -3.610785),
(1.654137, 0.982081, -0.192725, 1.003872),
(-2.394899, 3.550547, -0.430938, 3.261897),
(0.474917, 0.555166, -0.285173, 1.866752),
(-0.640369, -4.678490, -0.340663, 3.150098),
(1.747517, -3.248204, -0.001520, 1.221787),
(2.505283, -2.875006, -0.065617, -3.690269),
(1.337244, 2.221707, 0.044979, -2.459730),
(1.531012, 2.230981, -0.291206, -1.924535),
(-1.065792, 4.320740, 0.075405, -1.550644),
]
for idx, (theta0, omega0, alpha0, desired_theta) in enumerate(out_sample_cases):
state = np.array([theta0, omega0, alpha0])
theta_vals, omega_vals, alpha_vals, torque_vals = [], [], [], []
for _ in range(num_steps):
# Save values
theta_vals.append(state[0])
omega_vals.append(state[1])
alpha_vals.append(state[2])
# Compute ODE step with real state
state, torque = pendulum_ode_step(state, dt, desired_theta)
# Store torque
torque_vals.append(torque)
# Convert lists to arrays
theta_vals = np.array(theta_vals)
omega_vals = np.array(omega_vals)
alpha_vals = np.array(alpha_vals)
torque_vals = np.array(torque_vals)
# Get the final theta of the system at t=t_final
final_theta = theta_vals[-1]
final_thetas.append(final_theta)
# Calculate this specific condition's loss
loss = 1e3 * np.mean((theta_vals - desired_theta)**2)
losses.append(loss)
# Plot Results
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.plot(t_eval, theta_vals, label="theta", color="blue")
ax1.plot(t_eval, omega_vals, label="omega", color="green")
ax1.plot(t_eval, alpha_vals, label="alpha", color="red")
ax1.axhline(desired_theta, label="Desired Theta", color="black")
# Draw horizontal lines at theta = 2n*pi (as many as fit within range)
y_min = min(np.min(theta_vals), np.min(omega_vals), np.min(alpha_vals))
y_max = max(np.max(theta_vals), np.max(omega_vals), np.max(alpha_vals))
n_min = int(np.ceil(y_min / (2 * np.pi)))
n_max = int(np.floor(y_max / (2 * np.pi)))
theta_lines = [2 * n * np.pi for n in range(n_min, n_max + 1)]
ax1.set_xlabel("time [s]")
ax1.set_ylabel("theta, omega, alpha")
ax1.grid(True)
ax1.legend(loc="upper left")
ax2 = ax1.twinx()
ax2.plot(t_eval, torque_vals, label="torque", color="purple", linestyle="--")
ax2.set_ylabel("Torque [Nm]")
ax2.legend(loc="upper right")
plt.title(f"IC (theta={theta0}, omega={omega0}, alpha={alpha0})")
plt.tight_layout()
filename = f"{idx+1}_theta0_{theta0:.3f}_omega0_{omega0:.3f}_alpha0_{alpha0:.3f}_desiredtheta_{desired_theta:.3f}_finaltheta_{final_theta:.3f}.png"
plt.savefig(f"validation/out-of-sample/{filename}")
plt.close()
print(f"Saved out-of-sample validation case {idx+1}")
# Create a DataFrame for tabular representation
df_losses = pd.DataFrame(out_sample_cases, columns=["theta0", "omega0", "alpha0", "desired_theta"])
df_losses["final_theta"] = final_theta
df_losses["loss"] = losses
# Add run # column
df_losses.insert(0, "Run #", range(1, len(out_sample_cases) + 1))
# Print the table
print(df_losses.to_string(index=False))