Looking at the different controllers as they trained

This commit is contained in:
judsonupchurch 2025-02-16 00:03:29 +00:00
parent a865d37722
commit 3fc78d4508
8 changed files with 42 additions and 25 deletions

View File

@ -2,11 +2,9 @@ import os
import numpy as np
import torch
import torch.nn as nn
import matplotlib
matplotlib.use("Agg") # Use non-interactive backend
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import multiprocessing
from multiprocessing import Pool, cpu_count
# Define PendulumController class
class PendulumController(nn.Module):
@ -61,26 +59,36 @@ def pendulum_ode_step(state, dt, desired_theta, controller):
# Constants
g = 9.81 # Gravity
R = 1.0 # Length of the pendulum
m = 1.0 # Mass
m = 10.0 # Mass
dt = 0.02 # Time step
num_steps = 500 # Simulation time steps
# Directory containing controller files
controller_dir = "/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/no_time_weight/controllers"
loss_function = "cubic_time_weight"
#controller_dir = f"/home/judson/Neural-Networks-in-GNC/inverted_pendulum/training/{loss_function}/controllers"
controller_dir = f"C:/Users/Judson/Desktop/New Gitea/Neural-Networks-in-GNC/inverted_pendulum/training/{loss_function}/controllers"
controller_files = sorted([f for f in os.listdir(controller_dir) if f.startswith("controller_") and f.endswith(".pth")])
# Sorting controllers by epoch
controller_epochs = [int(f.split('_')[1].split('.')[0]) for f in controller_files]
sorted_controllers = [x for _, x in sorted(zip(controller_epochs, controller_files))]
# **Epoch Range Selection**
epoch_range = (0, 100) # Set your desired range (e.g., (0, 5000) or (0, 100))
filtered_controllers = [
f for f in sorted_controllers
if epoch_range[0] <= int(f.split('_')[1].split('.')[0]) <= epoch_range[1]
]
# **Granularity Control: Select every Nth controller**
N = 5 # Change this value to adjust granularity (e.g., every 5th controller)
selected_controllers = sorted_controllers[::N] # Take every Nth controller
N = 1 # Change this value to adjust granularity (e.g., every 5th controller)
selected_controllers = filtered_controllers[::N] # Take every Nth controller within the range
# Initial condition
theta0, omega0, alpha0, desired_theta = (-np.pi, -np.pi, 0.0, np.pi / 6) # Example initial condition
theta0, omega0, alpha0, desired_theta = (-np.pi, 0, 0.0, 0.0) # Example initial condition
# Function to run a single controller simulation (for multiprocessing)
# Parallel function must return epoch explicitly
def run_simulation(controller_file):
epoch = int(controller_file.split('_')[1].split('.')[0])
@ -97,39 +105,48 @@ def run_simulation(controller_file):
theta_vals.append(state[0])
state = pendulum_ode_step(state, dt, desired_theta, controller)
return epoch, theta_vals
return epoch, theta_vals # Return epoch with data
# Parallel processing
if __name__ == "__main__":
num_workers = min(multiprocessing.cpu_count(), 16) # Limit to 16 workers max
num_workers = min(cpu_count(), 16) # Limit to 16 workers max
print(f"Using {num_workers} parallel workers...")
print(f"Processing every {N}th controller, total controllers used: {len(selected_controllers)}")
with multiprocessing.Pool(processes=num_workers) as pool:
with Pool(processes=num_workers) as pool:
results = pool.map(run_simulation, selected_controllers)
# Sort results by epoch
results.sort(key=lambda x: x[0])
epochs, theta_over_epochs = zip(*results)
# **Sort results by epoch to ensure correct order**
results.sort(key=lambda x: x[0])
epochs, theta_over_epochs = zip(*results) # Unzip sorted results
# Convert results to NumPy arrays
theta_over_epochs = np.array(theta_over_epochs)
# Create 3D plot
# Create 3D line plot
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
# Meshgrid for 3D plotting
E, T = np.meshgrid(epochs, np.arange(num_steps) * dt)
time_steps = np.arange(num_steps) * dt # X-axis (time)
# Plot surface
ax.plot_surface(E, T, theta_over_epochs.T, cmap="viridis")
# Plot each controller as a separate line
for epoch, theta_vals in zip(epochs, theta_over_epochs):
ax.plot(
[epoch] * len(time_steps), # Y-axis (epoch stays constant for each line)
time_steps, # X-axis (time)
theta_vals, # Z-axis (theta evolution)
label=f"Epoch {epoch}" if epoch % (N * 10) == 0 else "", # Label some lines for clarity
)
# Labels
ax.set_xlabel("Epoch")
ax.set_ylabel("Time (s)")
ax.set_zlabel("Theta (rad)")
ax.set_title(f"Pendulum Angle Evolution Over Training Epochs (Granularity N={N})")
ax.set_title(f"Pendulum Angle Evolution for {loss_function}")
plt.savefig("pendulum_plot.png", dpi=1000, bbox_inches="tight")
print("Saved plot as 'pendulum_plot.png'.")
# Improve visibility
ax.view_init(elev=20, azim=-135) # Adjust 3D perspective
plt.savefig(f"{loss_function}.png", dpi=600)
#plt.show()
print(f"Saved plot as '{loss_function}.png'.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 MiB

BIN
analysis/no_time_weight.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB